6062
C. C. Silveira et al. / Tetrahedron Letters 50 (2009) 6060–6063
Table 2 (continued)
Entry
Indoles 1
Aldehydes 2
Cl
Product 3
2-ClC6H4
Time (h)
5
Yielda (%)
84
9
1a
CHO
N
H
N
H
2e
2f
3i
2-CH3C6H4
CHO
10
1a
1a
2
2
96
75
N
N
H
H
3j
C6H5
11
CHO
2g
N
N
H
H
3k
O
O
CHO
O
12
1a
5
72
O
2h
N
H
N
H
3l
O
O
CHO
2i
13
1a
1a
2
5
86
75
N
H
N
H
3m
3n
CHO
14
2j
N
H
N
H
Yields of pure products isolated by column chromatography (hexanes/AcOEt) and identified by mass spectrometry, 1H and 13C NMR, Refs. 4 and 5.
a
Cl (2c, entries 5 and 6; and 2e, entry 9), longer reaction times were
needed to completely consume the starting materials. The aliphatic
aldehyde pentanal (2j) reacted with indole 1a under our conditions
to afford, after 5 h, 3,30-pentane-1,1-diylbis-1H-indole (3n) in 75%
(entry 14).
Acknowledgments
This project is funded by MCT/CNPq, CAPES and FAPERGS.
References and notes
The glycerin/CeCl3ꢀ7H2O mixture can be successfully reused up
to five times without any treatment with excellent results. Thus,
for example, after the completion of the reaction of indole 1a and
benzaldehyde 2a (Table 2, entry 1), the product 3a was simply ex-
tracted with ethyl acetate (3 ꢁ 5 mL) and the glycerin/catalyst
mixture was reused in a new electrophilic substitution. The prod-
uct was obtained in 95%, 94%, 96%, 94%, and 95% yields after suc-
cessive cycles.
In conclusion, the mixture of glycerin/CeCl3ꢀ7H2O has proved to
be an effective, recyclable catalytic system for the synthesis of
bis(indolyl)methanes. The method is simple, clean, and general
for the reaction of aromatic and aliphatic aldehydes with indole.
The use of low-cost, renewable feedstock glycerin as a solvent
and of a small amount of the catalyst, together with the possibility
of their direct reuse for several cycles, is particularly relevant to the
green chemistry concept.
1. (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1996; (b)
Casapullo, A.; Bifulco, G.; Bruno, I.; Riccio, R. J. Nat. Prod. 2000, 63, 447; (c) Garbe,
T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod.
2000, 63, 596; (d) Bao, B.; Sun, Q.; Yao, X.; Hong, J.; Lee, C. O.; Sim, C. J.; Im, K. S.;
Jung, J. H. J. Nat. Prod. 2005, 68, 711.
2. Martínez, R.; Espinosa, A.; Tárraga, A.; Molina, P. Tetrahedron 2008, 64, 2184.
3. (a) Lei, P.; Abdelrahim, M.; Cho, S. D.; Liu, S.; Chintharlapalli, S.; Safe, S.
Carcinogenesis 2008, 29, 1139; (b) Diana, P.; Carbone, A.; Baraja, P.; Montalbano,
A.; Martorana, A.; Dattolo, G.; Gia, O.; Via, L. D.; Cirrincione, G. Bioorg. Med. Chem.
Lett. 2007, 17, 2342; (c) Zhang, H.-C.; Bonaga, L. V. R.; Ye, H.; Derian, C. K.;
Damiano, B. P.; Maryanoff, B. E. Bioorg. Med. Chem. Lett. 2007, 17, 2863.
4. (a) Perumal, P. T.; Nagarajan, R. Tetrahedron 2002, 58, 1229; (b) Chakrabarty, M.;
Ghosh, N.; Basak, R.; Harigaya, Y. Tetrahedron Lett. 2002, 43, 4075; (c) Chen, D.;
Yu, L.; Wang, P. G. Tetrahedron Lett. 1996, 37, 4467; (d) Yadav, J. S.; Reddy, B. V.
S.; Murthy, C. V. S. R.; Kumar, G. M.; Madan, C. Synthesis 2001, 783; (e) Deb, M.
L.; Bhuyan, P. J. Synlett 2008, 325.
5. (a) Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Tetrahedron 2004, 60, 2051; (b)
Nadkarni, S. V.; Gawande, M. B.; Jayaram, R. V.; Nagarkar, J. M. Catal. Commun.
2008, 9, 1728; (c) Bandgar, B. P.; Patil, A. V.; Kamble, V. T. Arkivoc 2007, 16, 252;
(d) Mona, H.-S. Synth. Commun. 2008, 38, 832; (e) Dabiri, M.; Baghbanzadeh, M.;