A R T I C L E S
Lanni and McNeil
on surfaces,18 including 2,5-bis(hexyloxy)phenylene,19 9,9-
dioctylfluorene,20 2,3-dihexylthienopyrazine,21 N-octylcarba-
zole,20b 3-alkoxythiophene,22 and N-hexylpyrrole.23 However,
without mechanistic data, each monomer has required empirical
development of unique reaction conditions to achieve chain
growth. Preliminary attempts at preparing simple block copoly-
mers have highlighted the challenges involved when each
monomer requires highly specific conditions.23,24 For example,
Yokozawa reported that the sequence of monomer addition had
a significant effect on the molecular weight distribution in the
synthesis of poly(2,5-bis(hexyloxy)benzene-b-N-hexylpyrrole).23
He suggested that the excess 1,2-bis(diphenylphosphino)ethane
(dppe) ligand, which is required for chain-growth polymerization
of the pyrrole, interfered with the phenylene polymerization.
However, the mechanistic influences of the ligand and other
additives that are reported to promote chain growth have not
been explored. In order to rationally expand this methodology
to other monomers and copolymerizations, a detailed under-
standing of the reaction mechanism, particularly the roles of
ligand, monomer, and additives, is essential.
To date, the few mechanistic studies that have been performed
on these Ni-catalyzed chain-growth polymerizations have
focused solely on thiophenes.12,13,25,26 Most notably, rate studies
by McCullough on the polymerization of thiophene catalyzed
by Ni(dppp)Cl2 [dppp ) 1,3-bis(diphenylphosphino)propane]
found that the reaction is first-order in monomer, suggesting
rate-determining transmetalation.13a Given the narrow substrate
scope, we sought to elucidate the mechanistic influences of both
the monomer and the ligand structure. Herein we report the
results of rate and spectroscopic studies of the polymerization
of 2,5-bis(hexyloxy)phenylene and 3-hexylthiophene using
Ni(dppe)Cl2, a frequent alternative to Ni(dppp)Cl2.12b,19,23 We
provide strong evidence for rate-determining reductive elimina-
tion and identify NiII-biaryl and NiII-bithiophene complexes
as the catalyst resting states. Furthermore, we show that LiCl,
an additive reported to be beneficial in controlled polymeriza-
tions of 2,5-bis(hexyloxy)phenylene,19 has no effect on the rate-
determining step or the molecular weight distribution under our
reaction conditions. These results, combined with the rate data
previously reported by McCullough for Ni(dppp)Cl2-catalyzed
polymerization,13a suggest that the ligand structure has a strong
influence on the polymerization mechanism.
(14) (a) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2008,
130, 15258–15259. (b) Johnson, S. A.; Huff, C. W.; Mustafa, F.;
Saliba, M. J. Am. Chem. Soc. 2008, 130, 17278–17280. (c) Ates¸in,
T. A.; Li, T.; Lachaize, S.; Garc´ıa, J. J.; Jones, W. D. Organometallics
2008, 27, 3811–3817. (d) Garc´ıa, J. J.; Brunkan, N. M.; Jones, W. D.
J. Am. Chem. Soc. 2002, 124, 9547–9555. (e) Braun, T.; Cronin, L.;
Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New
J. Chem. 2001, 25, 19–21. (f) Bach, I.; Po¨rschke, K.-R.; Goddard, R.;
Kopiske, C.; Kru¨ger, C.; Rufin´ska, A.; Seevogel, K. Organometallics
1996, 15, 4959–4966. (g) Stanger, A.; Shazar, A. J. Organomet. Chem.
1993, 458, 233–236. (h) Boese, R.; Stanger, A.; Stellberg, P.; Shazar,
A. Angew. Chem., Int. Ed. 1993, 32, 1475–1477. (i) Stanger, A.;
Vollhardt, K. P. C. Organometallics 1992, 11, 317–320. (j) Stanger,
A.; Boese, R. J. Organomet. Chem. 1992, 430, 235–243. (k) Scott,
F.; Kru¨ger, C.; Betz, P. J. Organomet. Chem. 1990, 387, 113–121. (l)
Choe, S.-B.; Klabunde, K. J. J. Organomet. Chem. 1989, 359, 409–
418. (m) Benn, R.; Mynott, R.; Topalovic´, I.; Scott, F. Organometallics
1989, 8, 2299–2305. (n) Brezinski, M. M.; Klabunde, K. J. Organo-
metallics 1983, 2, 1116–1123. (o) Brauer, D. J.; Kru¨ger, C. Inorg.
Chem. 1977, 16, 884–891. (p) Jonas, K. J. Organomet. Chem. 1974,
78, 273–279.
(15) Hiorns, R. C.; Bettignies, R.; Leroy, J.; Bailly, S.; Firon, M.; Sentein,
C.; Khoukh, A.; Preud’homme, H.; Dagron-Lartigau, C. AdV. Funct.
Mater. 2006, 16, 2263–2273.
(16) For syntheses of end-functionalized polymers via this method, see:
(a) Urien, M.; Erothu, H.; Cloutet, E.; Hiorns, R. C.; Vignau, L.;
Cramail, H. Macromolecules 2008, 41, 7033–7040. (b) Hiorns, R. C.;
Khoukh, A.; Gourdet, B.; Dagron-Lartigau, C. Polym. Int. 2006, 55,
608–620. (c) Jeffries-EL, M.; Sauve´, G.; McCullough, R. D. Macro-
molecules 2005, 38, 10346–10352. (d) Iovu, M. C.; Jeffries-EL, M.;
Sheina, E. E.; Cooper, J. R.; McCullough, R. D. Polymer 2005, 46,
8582–8586. (e) Jeffries-EL, M.; Sauve´, G.; McCullough, R. D. AdV.
Mater. 2004, 16, 1017–1019. For examples of controlled microstructure
polymers via this method, see: (f) Wu, P.-T.; Ren, G.; Li, C.;
Mezzenga, R.; Jenekhe, S. A. Macromolecules 2009, 42, 2317–2320.
(g) Ouhib, F.; Khoukh, A.; Ledeuil, J.-B.; Martinez, H.; Desbrie`res,
J.; Dagron-Lartigau, C. Macromolecules 2008, 41, 9736–9743. (h)
Ohshimizu, K.; Ueda, M. Macromolecules 2008, 41, 5289–5294. (i)
Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem. Soc.
2008, 130, 7812–7813.
Results
Grignard Metathesis. Monomer 2a was generated in situ from
1 via Grignard metathesis (GRIM) with i-PrMgCl (eq 1):27 In
(17) For polymerization of thiophene derivatives via this method, see: (a)
Benanti, T. L.; Kalaydjian, A.; Venkataraman, D. Macromolecules
2008, 41, 8312–8315. (b) Li, Y.; Xue, L.; Xia, H.; Xu, B.; Wen, S.;
Tian, W. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3970–3984.
(c) Ouhib, F.; Dkhissi, A.; Iratçabal, P.; Hiorns, R. C.; Khoukh, A.;
Desbrie`res, J.; Pouchan, C.; Dagron-Lartigau, C. J. Polym. Sci., Part
A: Polym. Chem. 2008, 46, 7505–7516. (d) Vallat, P.; Lamps, J.-P.;
Schosseler, F.; Rawiso, M.; Catala, J.-M. Macromolecules 2007, 40,
2600–2602.
(18) (a) Sontag, S. K.; Marshall, N.; Locklin, J. Chem. Commun. 2009,
3354–3356. (b) Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.;
Horecha, M.; Stamm, M.; Uhrich, C.; Riede, M.; Leo, K.; Kiriy, A.
J. Am. Chem. Soc. 2009, 131, 153–161. (c) Beryozkina, T.; Boyko,
K.; Khanduyeva, N.; Senkovskyy, V.; Horecha, M.; Oertel, U.; Simon,
F.; Stamm, M.; Kiriy, A. Angew. Chem., Int. Ed. 2009, 48, 2695–
2698. (d) Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Bo-
charova, V.; Simon, F.; Nitschke, M.; Stamm, M.; Gro¨tzschel, R.;
Kiriy, A. Macromolecules 2008, 41, 7383–7389. (e) Senkovskyy, V.;
Khanduyeva, N.; Komber, H.; Oertel, U.; Stamm, M.; Kuckling, D.;
Kiriy, A. J. Am. Chem. Soc. 2007, 129, 6626–6632.
the presence of 1 equiv of LiCl, rate studies demonstrated that
the reaction is 4 times faster than in the absence of salt [see the
Supporting Information (SI)]. Furthermore, a peak shift was
observed in the aromatic region of the product’s no-D NMR
spectrum depending on the presence and absence of LiCl (Figure
1A). These results suggest that a mixed aggregate (2b) between
LiCl and the ArMgCl is formed.28 The aggregation state (e.g.,
1:1 mixed dimer vs 2:2 mixed tetramer) for this species was
not determined, but Knochel has suggested that related aryl
(19) Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T. J. Am.
Chem. Soc. 2006, 128, 16012–16013.
(20) (a) Huang, L.; Wu, S.; Qu, Y.; Geng, Y.; Wang, F. Macromolecules
2008, 41, 8944–8947. (b) Stefan, M. C.; Javier, A. E.; Osaka, I.;
McCullough, R. D. Macromolecules 2009, 42, 30–32.
(21) Wen, L.; Duck, B. C.; Dastoor, P. C.; Rasmussen, S. C. Macromol-
ecules 2008, 41, 4576–4578.
(22) (a) Sheina, E. E.; Khersonsky, S. M.; Jones, E. G.; McCullough, R. D.
Chem. Mater. 2005, 17, 3317–3319. (b) Also see ref 12b.
(24) Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Chem. Lett. 2008, 37,
1022–1023.
(23) Yokoyama, A.; Kato, A.; Miyakoshi, R.; Yokozawa, T. Macromol-
ecules 2008, 41, 7271–7273.
(25) Beryozkina, T.; Senkovskyy, V.; Kaul, E.; Kiriy, A. Macromolecules
2008, 41, 7817–7823.
9
16574 J. AM. CHEM. SOC. VOL. 131, NO. 45, 2009