À
COMMUNICATIONS
Rhodium(III)-Catalyzed in situ Oxidizing Directing Group-Assisted C H
References
ment with those in Table 1 and support the proposed
mechanism in Scheme 2. It is noteworthy that
a HOAc/OAcÀ buffer medium is necessary for the
catalytic reaction to proceed and RhCp*(OAc)2, gen-
erated from [RhCp*Cl2]2 and NaOAc, is plausibly the
active catalyst.[10a,b] The NaCl precipitation appears to
be the driving force for the generation of
RhCp*(OAc)2.[7h,j] In the absence of ketone (3b) three
different 1,4-addition products along with the expect-
ed 5c were observed (Scheme 3). The results show
that 1,4-addition reactions became the preferred path-
way in the absence of ketone. To further understand
the reaction mechanism, deuterium isotope labeling
reactions were also investigated (see the Supporting
Information and Scheme 3). A 72% H/D exchange at
the ortho carbon of D5-1a was found (see the Sup-
[1] a) K. Butkovic, D. Vuk, Z. Marinic, J. Penic, M. Sin-
dler-Kulyk, Tetrahedron 2010, 66, 9356; b) S. W. Youn,
J. H. Bihn, Tetrahedron Lett. 2009, 50, 4598; c) A.
Ricci, (Ed.), Amino Group Chemistry, Wiley-VCH,
Weinheim, 2008.
[2] a) M. Shen, B. E. Leslie, T. G. Driver, Angew. Chem.
2008, 120, 5134; Angew. Chem. Int. Ed. 2008, 47, 5056;
b) K. Muniz, J. Am. Chem. Soc. 2007, 129, 14542; c) K.
Mennecke, W. Solodenko, A. Kirschning, Synthesis
2008, 1589; d) W. R. Bowman, A. J. Fletcher, P. J.
Lovell, J. M. Pedersen, Synlett 2004, 1905; e) M.
Gruber, S. Chouzier, K. Koehler, L. Djakovitch, Appl.
Catal. A. 2004, 265, 161; f) K. Kaneda, H. Kuwahara, T.
Imanaka, J. Mol. Catal. 1994, 88, L267; g) K. Song, S.
Kong, Q. Liu, W.-H. Sun, C. Redshaw, J. Organomet.
Chem. 2014, 751, 453; h) S. R. Borhade, S. B. Wagh-
mode, Tetrahedron Lett. 2008, 49, 3423; see also the
supporting information files of the cited articles.
[3] For selected reviews: a) T. Satoh, M. Miura, Chem.
Eur. J. 2010, 16, 11212; b) S. H. Cho, J. Y. Kim, J.
Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068;
c) F. W. Patureau, J. Wencel-Delord, F. Glorius, Aldri-
chimica Acta 2012, 45, 31; d) Y. Wu, J. Wang, F. Mao,
F. Y. Kwong, Chem. Asian J. 2014, 9, 26; e) J. W.
Delord, T. Drçge, F. Liu, F. Glorius, Chem. Soc. Rev.
2011, 40, 4740; f) G. Song, F. Wang, X. Li, Chem. Soc.
Rev. 2012, 41, 3651; g) D. A. Colby, A. S. Tsai, R. G.
Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814.
[4] For selected examples of Rh-, Ru- and Pd-catalyzed
À
porting Information) indicating that the C H activa-
tion is reversible. In addition, the observed KIE value
À
k5c/kD -5c of 2.9 suggest that the C H bond cleavage
4
occurred in one of the product-forming steps.[11a,b]
In summary, we have successfully developed a rho-
À
dium-catalyzed hydrazine-assisted C H activation
and olefination reaction for the synthesis of unpro-
tected 2-vinylanilines. The hydrazone, in situ generat-
ed from arylhydrazine and ketone, acts as a directing
group and as an internal oxidant. A wide range of
arenes and alkenes can be used in this catalytic reac-
tion. The catalytic reaction appears to be the first ex-
ample for the synthesis of 2-vinylanilines using an in
À
C H olefination, see: a) N. Umeda, K. Hirano, T.
À
situ generated oxidizing directing group-assisted C H
activation as a key step.
Satoh, M. Miura, J. Org. Chem. 2009, 74, 7094; b) T.-J.
Gong, B. Xiao, Z.-J. Liu, J. Wan, J. Xu, D.-F. Luo, Y.
Fu, L. Liu, Org. Lett. 2011, 13, 3235; c) H. Li, Y. Li, X.-
S. Zhang, K. Chen, X. Wang, Z.-J. Shi, J. Am. Chem.
Soc. 2011, 133, 15244; d) F. W. Patureau, T. Besset, F.
Glorius, Angew. Chem. 2011, 123, 1096; Angew. Chem.
Int. Ed. 2011, 50, 1064; e) S. H. Park, J. Y. Kim, S.
Chang, Org. Lett. 2011, 13, 2372; f) C. Wang, H. Chen,
Z. Wang, J. Chen, Y. Huang, Angew. Chem. 2012, 124,
7354; Angew. Chem. Int. Ed. 2012, 51, 7242; g) L. Ac-
kermann, L. Wang, R. Wolfram, A. V. Lygin, Org. Lett.
2012, 14, 337; h) K. Padala, M. Jeganmohan, Org. Lett.
2012, 14, 1134; i) S. I. Kozhushkov, L. Ackermann,
Chem. Sci. 2013, 4, 886; j) K. M. Engle, D.-H. Wang, J.-
Q. Yu, Angew. Chem. 2010, 122, 6305; Angew. Chem.
Int. Ed. 2010, 49, 6169; k) A. Garcia-Rubia, B. Urones,
R. Gomez Arrayas, J. C. Carretero, Angew. Chem.
2011, 123, 11119; Angew. Chem. Int. Ed. 2011, 50,
10927; l) C. Wang, H. Ge, Chem. Eur. J. 2011, 17, 1437;
m) H.-L. Wang, R.-B. Hu, H. Zhang, A.-X. Zhou, S.-D.
Yang, Org. Lett. 2013, 15, 5302.
Experimental Section
General Procedure
A
1
sealed tube containing arylhydrazine hydrochloride
(1.00 mmol), arylalkene (2.00 mmol), [RhCp*Cl2]2
2
(2.0 mol%) and NaOAc (1.50 mmol) was evacuated and
purged with nitrogen gas three times. Then, EtOH (2.0 mL),
diethyl ketone 3b (1.20 mmol) and AcOH (3.00 mmol) were
sequentially added to the system via a syringe under a nitro-
gen atmosphere and the reaction mixture was allowed to stir
at 1008C for 20 h. When the reaction was complete, the mix-
ture was cooled and diluted with CH2Cl2 (10 mL). The mix-
ture was filtered through a celite pad and the celite pad was
washed with CH2Cl2 (50 mL). The filtrate was concentrated
and the residue was purified by column chromatography
(neutral aluminium oxide, hexane-EtOAc) to give the corre-
sponding pure olefination product 4.
[5] a) N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem.
Soc. 2010, 132, 6908; b) N. Guimond, S. I. Gorelsky, K.
Fagnou, J. Am. Chem. Soc. 2011, 133, 6449; c) P. C.
Too, S. H. Chua, S. H. Wong, S. Chiba, J. Org. Chem.
2011, 76, 6159; d) T. K. Hyster, T. Rovis, Chem.
Commun. 2011, 47, 11846; e) X. Zhang, D. Chen, M.
Zhao, J. Zhao, A. Jia, X. Li, Adv. Synth. Catal. 2011,
353, 719; f) S. Rakshit, C. Grohmann, T. Besset, F. Glo-
rius, J. Am. Chem. Soc. 2011, 133, 2350; g) C. Kornhaa,
Acknowledgements
We thank the Ministry of Science and Technology of the Re-
public of China (NSC-102-2628M-007-005) for support of
this research.
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5
ÞÞ
These are not the final page numbers!