S. Ye, J. Wu / Tetrahedron Letters 50 (2009) 6273–6275
6275
118, 3309; (e) Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450; (f) Bihelovic,
F.; Matovic, R.; Vulovic, B.; Saicic, R. N. Org. Lett. 2007, 9, 5063; (g) Duschek, A.;
Kirsch, S. F. Angew. Chem., Int. Ed. 2008, 47, 5703; (h) Binder, J. T.; Crone, B.;
Haug, T. T.; Menz, H.; Kirsch, S. F. Org. Lett. 2008, 10, 1025; (i) Ding, Q.; Wu, J.
Org. Lett. 2007, 9, 4959; (j) Yang, T.; Ferrali, A.; Campbell, L.; Dixon, D. J. Chem.
Commun. 2008, 2923.
O
O
Me
3
Me
PPh3
Ph3P
C
3. For an excellent review, see: Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009.
4. For reviews, see: (a) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653; (b)
Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001; (c) Langer, P.
Angew. Chem., Int. Ed. 2000, 39, 3049–3052; (d) Basavaiah, D.; Rao, A. J.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811.
CHO R3 NH2
R3
R3
R2
N
2
R1
R1
N
AgOTf
R1
A
R2
R2
H2O
TfOAg
[Ag]
1
B
5. For recent selected examples, see: (a) Schwartz, B. D.; Porzelle, A.; Jack, K. S.;
Faber, J. M.; Gentle, I. R.; Williams, C. M. Adv. Synth. Catal. 2009, 351, 1148; (b)
Bugarin, A.; Connell, B. T. J. Org. Chem. 2009, 74, 4638; (c) Shi, M.; Qi, M.-J.; Liu,
X.-G. Chem. Commun. 2008, 45, 6025; (d) Tarsis, E.; Gromova, A.; Lim, D.; Zhou,
G.; Coltart, D. M. Org. Lett. 2008, 10, 4819; (e) Gajda, A.; Gajda, T. J. Org. Chem.
2008, 73, 8643; (f) Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008, 130,
12596; (g) Liu, Y.; Shi, M. Adv. Synth. Catal. 2008, 350, 122; (h) Shi, M.; Liu, X.-
G. Org. Lett. 2008, 10, 1043; (i) Shi, M.; Ma, G.-N.; Gao, J. J. Org. Chem. 2007, 72,
9779; (j) Chuprakov, S.; Malyshev, D. A.; Trofimov, A.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 14868; (k) Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349,
2129; (l) He, L.; Jian, T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466; (m) Masson, G.;
Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614; (n) Sorbetti, J. M.;
Clary, K. N.; Rankic, D. A.; Wulff, J. E.; Parvez, M.; Back, T. G. J. Org. Chem. 2007,
72, 3326.
O
PPh3
O
Me
Me
H
R3
N
R3
R2
N
R1
R1
R2
AgOTf
PPh3
D
4
[Ag]
Scheme 1. Possible mechanism for the silver triflate and triphenylphosphine
co-catalyzed three-component reaction.
6. For recent selected examples, see: (a) Berkessel, A.; Roland, K.; Neudoerfl, J. M.
Org. Lett. 2006, 8, 4195; (b) Rodgen, S. A.; Schaus, S. E. Angew. Chem., Int. Ed.
2006, 45, 4929; (c) Krafft, M. E.; Wright, J. A. Chem. Commun. 2006, 28, 2977; (d)
Liu, Y.-H.; Chen, L.-H.; Shi, M. Adv. Synth. Catal. 2006, 348, 973; (e) Shi, M.; Chen,
L.-H.; Teng, W.-D. Adv. Synth. Catal. 2005, 347, 1781; (f) Krafft, M. E.; Seibert, K.
A.; Haxell, T. F. N.; Hirosawa, C. Chem. Commun. 2005, 46, 5772; (g) Wang, J.; Li,
H.; Yu, X.; Zu, L.; Wang, W. Org. Lett. 2005, 7, 4293; (h) Aroyan, C. E.; Vasbinder,
M. M.; Miller, S. J. Org. Lett. 2005, 7, 3849; (i) Krafft, M. E.; Haxell, T. F. N. J. Am.
Chem. Soc. 2005, 127, 10168; (j) Back, T. G.; Rankic, D. A.; Sorbetti, J. M.; Wulff, J.
E. Org. Lett. 2005, 7, 2377; (k) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc.
2005, 127, 3680; (l) Mi, X.; Luo, S.; Cheng, J.-P. J. Org. Chem. 2005, 70, 2338.
7. Selected examples for metal-catalyzed cyclization of 2-alkynylbenzaldehyde:
(a) Beeler, A. B.; Su, S.; Singleton, C. A.; Porco, J. A., Jr. J. Am. Chem. Soc 2007, 129,
1413. and references cited therein; (b) Asao, N. Synlett 2006, 1645; (c)
Nakamura, I.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc.
2005, 127, 9844; (d) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A.-K.; Oh, C.-H.
Org. Lett. 2005, 7, 5289; (e) Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005,
70, 8977; (f) Asao, N.; Sato, K.; Menggenbateer; Yamamoto, Y. J. Org. Chem.
2005, 70, 3682; (g) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett.
2004, 6, 605; (h) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126,
7459; (i) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458.
8. For selected examples, see: (a) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.;
Takemoto, Y. J. Org. Chem. 2007, 72, 4462. and references cited therein; (b)
Asao, N.; Yudha, S. S.; Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005, 44,
5526; (c) Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed.
2006, 45, 3822; (d) Asao, N.; Iso, K.; Yudha, S. S. Org. Lett. 2006, 8, 4149; (e)
Mori, S.; Uerdingen, M.; Krause, N.; Morokuma, K. Angew. Chem., Int. Ed. 2005,
44, 4715; (f) Asao, N.; Chan, C. S.; Takahashi, K.; Yamamoto, Y. Tetrahedron
2005, 61, 11322; (g) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron Lett.
2004, 45, 7339; (h) Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem.,
Int. Ed. 2003, 42, 4257; (i) Yavari, I.; Ghazanfarpour-Darjani, M.; Sabbaghan, M.;
Hossaini, Z. Tetrahedron Lett. 2007, 48, 3749; (j) Shaabani, A.; Soleimani, E.;
Khavasi, H. R. Tetrahedron Lett. 2007, 48, 4743; (k) Wang, G.-W.; Li, J.-X. Org.
Biomol. Chem. 2006, 4, 4063; (l) Diaz, J. L.; Miguel, M.; Lavilla, R. J. Org. Chem.
2004, 69, 3550.
dehyde 1 with electron-rich group attached on the aromatic ring
was employed (Table 2, entry 11). It might be due to the lower
electrophilicity of the in situ-generated iminium. Pent-1-en-3-
one 2b was also a suitable partner in this reaction (Table 2, entries
12–18). However, no product was detected when methyl acrylate
2c was employed as a substrate in the reaction (Table 2, entry
19). The possible mechanism was proposed as well (Scheme 1).
We reasoned that in the presence of AgOTf, the triple bond might
coordinate to the silver salt, and subsequently, the nitrogen atom
of imine A could attack the triple bond via 6-endo-cyclization to af-
ford an isoquinolinium intermediate B. Meanwhile, triphenylphos-
phine as a nucleophilic catalyst attacked the
a,b-unsaturated
ketone 3 leading to the enolate C, which then underwent intermo-
lecular attack of the isoquinolinium intermediate B to generate
phosphinium D. Finally, elimination of phosphine gave rise to the
desired product 4.
In summary, we have described a three-component reaction of
2-alkynylbenzaldehyde, amine, and
a,b-unsaturated ketone cata-
lyzed by the combination of AgOTf and PPh3 as an activation sys-
tem. This reaction proceeds smoothly under mild conditions,
giving rise to the functionalized 1,2-dihydroisoquinolines in mod-
erate to good yields. Further transformation combining metal
catalysis and organocatalysis is under investigation in our labora-
tory, and the results will be reported in due course.
Acknowledgments
9. (a) Chen, Z.; Yang, X.; Wu, J. Chem. Commun. 2009, 3469; (b) Ding, Q.; Wang, Z.;
Wu, J. J. Org. Chem. 2009, 74, 921; (c) Yu, X.; Ding, Q.; Chen, Z.; Wu, J.
Tetrahedron Lett. 2009, 50, 4279; (d) Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett.
2009, 50, 198; (e) Gao, K.; Wu, J. Org. Lett. 2008, 10, 2251; (f) Ding, Q.; Wu, J.
Adv. Synth. Catal. 2008, 350, 1850; (g) Yu, X.; Ding, Q.; Wang, W.; Wu, J.
Tetrahedron Lett. 2008, 49, 4390; (h) Gao, K.; Wu, J. J. Org. Chem. 2007, 72, 8611;
(i) Ding, Q.; Ye, Y.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 5439; (j) Sun, W.; Ding,
Q.; Sun, X.; Fan, R.; Wu, J. J. Comb. Chem. 2007, 9, 690; (k) Ding, Q.; Wang, B.;
Wu, J. Tetrahedron 2007, 63, 12166.
Financial support from National Natural Science Foundation of
China (20772018), the Science and Technology Commission of
Shanghai Municipality (09JC14049), and Program for New Century
Excellent Talents in University (NCET-07-0208) is gratefully
acknowledged.
10. General procedure for the silver triflate and triphenylphosphine co-catalyzed
Supplementary data
reactions of 2-alkynylbenzaldehyde 1, amine 2, and a,b-unsaturated ketone 3: a,b-
unsaturated ketone 3 (0.4 mmol 2.0 equiv) was added to a solution of 2-
alkynylbenzaldehyde 1 (0.20 mmol), amine 2 (0.22 mmol, 1.1 equiv), AgOTf
(0.02 mmol, 10 mol %), and PPh3 (0.04 mmol 20 mol %) in THF (2.0 mL). The
solution was then stirred at 70 °C. After completion of reaction as indicated by
TLC, the solvent was evaporated. The residue was purified by flash
chromatography on silica gel to provide the desired product 4. Data of
selected example: 3-(2-(4-Methoxyphenyl)-3-phenyl-1,2-dihydroisoquinolin-
1-yl)but-3-en-2-one 4a. 1H NMR (400 MHz, CDCl3) d 2.37 (s, 3H), 3.64 (s, 3H),
5.41 (s, 1H), 5.98 (s, 1H), 6.08 (s, 1H), 6.62 (d, J = 9.2 Hz, 2H), 6.64 (s, 1H), 7.03–
7.06 (m, 3H), 7.11–7.26 (m, 6H), 7.48 (d, J = 6.8 Hz, 2H); 13C NMR (100 MHz,
CDCl3) d 49.4, 77.4, 84.8, 133.7, 135.9, 146.1, 146.4, 147.9, 148.8, 148.9, 149.2,
149.7, 150.1, 150.5, 151.5, 154.7, 159.5, 163.0, 163.3, 170.0, 177.2, 222.6;
HRMS calcd for C26H24NO2 (M++H): 382.1807, found: 382.1824. (For details,
please see Supplementary data).
Supplementary data associated with this article can be found, in
References and notes
1. (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726; (b) List, B.
Tetrahedron 2002, 58, 5573; (c) Duthaler, R. O. Angew. Chem., Int. Ed. 2003, 42,
975; (d) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
2. For selected examples, see: (a) Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed.
2006, 45, 1952; (b) Jellerichs, B. G.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc.
2003, 125, 7758; (c) Trost, B. M.; McEachern, E. J.; Toste, F. D. J. Am. Chem. Soc.
1998, 120, 12702; (d) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996,