Journal of the American Chemical Society
Article
Noorduin, W. L.; Meekes, H.; van der Enckevort, W. J.; Kaptein, B.;
Vlieg, E.; Kellogg, R. M. Org. Process Res. Dev. 2009, 13, 1195−1198.
(12) (a) Noorduin, W. L.; Bode, A. A.; van der Meijden, M.; Meekes,
H.; van Etteger, A. F.; van Enckevort, W. J.; Christianen, P. C.;
Kaptein, B.; Kellogg, R. M.; Rasing, T.; Vlieg, E. Nature Chem. 2009, 1,
729−732. (b) Noorduin, W. L.; Meekes, H.; van Enckevort, W. J.;
Millemaggi, A.; Leeman, M.; Kaptein, B.; Kellogg, R. M.; Vlieg, E.
Angew. Chem., Int. Ed. 2008, 47, 6445−6447. (c) Kaptein, B.;
Noorduin, W. L.; Meekes, H.; van Enckevort, W. J.; Kellogg, R. M.;
Vlieg, E. Angew. Chem., Int. Ed. 2008, 47, 7226−7229. (d) Noorduin,
W. L.; van Enckevort, W. J.; Meekes, H.; Kaptein, B.; Kellogg, R. M.;
Tully, J. C.; McBride, J. M.; Vlieg, E. Angew. Chem., Int. Ed. 2010, 49,
8435−8438.
CONCLUSIONS
■
The results reported here help to deconvolute the various
chemical and physical rate processes that occur during attrition-
enhanced deracemization. Molecules move rapidly between the
solution and solid phases under attrition conditions, on a time
scale similar to that of the net conversion of one
enantiomorphic solid to the other; yet the net evolution of
crystal enantiomeric excess cannot be correlated in a simple
manner with the phase transfer of molecules. A transient
growth in crystal size is correlated with the accelerated
evolution of solid-phase homochirality, and the stochastic
nature of the process rationalizes the observed random
outcomes of the deracemization process for initially racemic
mixtures. The concept of a crystal-size-induced solubility
driving force helps to define the mechanism and is exploited
to develop a novel and reproducible approach for the
separation of enantiomorphic solids. Implications for the
emergence of single chirality in biological molecules are
discussed.
(13) Meekes, H.; Noorduin, W. L.; Bode, A. A. C.; van Enckevort, W.
J. P.; Kaptein, B.; Kellogg, R. M.; Vlieg, E. Cryst. Growth Des. 2008, 8,
1675−1681.
(14) (a) Uwaha, M. J. Phys. Soc. Jpn. 2004, 73, 2601. (b) Skrdla, P.
Cryst. Growth Des. 2011, 11, 1957−1965.
(15) Iggland, M.; Mazzotti, M. Cryst. Growth Des. 2011, 11, 4611−
4622.
(16) See Supporting Information for details.
(17) The presence of chiral impurities was in fact invoked to help
rationalize the apparent lack of randomness in results that appeared
skewed toward one enantiomorph in the first report of attrition-
enhanced deracemization of intrinsically chiral molecules (see ref 4).
(18) The experiments of Figure 2 were carried out with ca. 300 mg of
rac-1 in 3 mL of MeCN, of which ca. 250 mg remains in the solid
phase. Thus, for series b and series c, the evolution to homochirality
that takes place over 2 h between the 3 and 5 h sampling points
involves the conversion of ca. 125 mg of one enantiomorph to the
other, for an average mass conversion rate of ca. 1 mg/min.
(19) Samples were imaged on a laser scanning confocal microscope
to produce high-resolution snapshots of 5−7 randomly selected
regions (for a population size of 11 000−17 000 individual particles)
for each sample. A calibrated perimeter around each crystal defined in
2D space is created by the imaging software to generate a total count
of individual objects with area expressed in μm2. Results are sorted
into histograms reporting fraction of total crystal area as a function of
the bins of crystal area range in μm2.
ASSOCIATED CONTENT
* Supporting Information
Details of general methods for synthesis and deracemization
experiments, CSD measurements, ee measurement, and isotope
measurements. This material is available free of charge via the
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(20) The question of kinetic isotope effects in the use of 15N-1 in
tracking the movement of molecules should be addressed. In the four
experiments conducted under the conditions shown in Figure 5, the
two that evolved to single chirality in S-1 were initiated in one case
with the 15N tag present in the S-1 solid and in the other case with the
15N tag in the R-1 solid. Similarly, the two that remained racemic
commenced with the 15N tag in opposite enantiomorphs. These
results imply the absence of any kinetic isotope effects in the
deracemization process.
(21) Pasteur, L. C.R. Hebd. Seanc. Acad. Sci. Paris 1848, 26, 535−538.
́
(22) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates and
Resolution; Krieger: Florida, 1994; Chap. 4.
(23) Levilain, G.; Coquerel, G. CrystEngComm 2010, 12, 1983−1992.
(24) Welch, C. R. Chirality 2001, 13, 425−427.
D.G.B. acknowledges funding from the NSF (CBET Award
1066608) for the work on compounds 1 and 3 and NASA
(Exobiology NNX12AD78G) for the work on Pasteur’s tartrate
2. Dr. William B. Kiosses (TSRI Core Microscopy) is
acknowledged for assistance with light microscopy imaging
and crystal population analysis.
REFERENCES
■
(1) Viedma, C. Phys. Rev. Lett. 2005, 94, 065504-1−065504-4.
(2) (a) van’t Hoff, J. H. Ber. Dtsch. Chem. Ges 1902, 35, 4252−4264.
(b) Roozeboom, H.W. B. Z. Phys. Chem. Stoech Verwandt 1899, 28,
494−517.
(3) (a) Kondepudi, D. K. Science 1990, 250, 975−976. (b) McBride,
J. M.; Carter, R. L. Angew. Chem., Int. Ed. Engl. 1991, 30, 293−95.
(4) Noorduin, W. L.; Izumi, T.; Millemaggi, A.; Leeman, M.; Meekes,
H.; Van Enckevort, W. J.; Kellogg, R. M.; Kaptein, B.; Vlieg, E.;
Blackmond, D. G. J. Am. Chem. Soc. 2008, 130, 1158−1159.
(5) Viedma, C.; Ortiz, J. E.; de Torres, T.; Izumi, T.; Blackmond, D.
G. J. Am. Chem. Soc. 2008, 130, 15274−15275.
(6) Crusats, J.; Veintemillas-Verdaguer, S.; Ribo, J. M. Chem.Eur. J.
2006, 12, 776−7781.
(7) Viedma, C. Astrobiology 2007, 7, 312−319.
(8) Blackmond, D. G. Chem.Eur. J. 2007, 13, 3290−3295.
(9) McBride, J. M.; Tully, J. C. Nature 2008, 452, 161−162.
(10) Leeman, M.; de Gooier, J. M.; Boer, K.; Zwaagstra, K.; Kaptein,
B.; Kellogg, R. M. Tetrahedron: Asymmetry 2010, 21, 1191−1193.
(11) (a) Noorduin, W. L.; van der Asdonk, P.; Bode, A. A.; Meekes,
H.; Van Enckevort, W. J.; Vlieg, E.; Kaptein, B.; van der Meijden, M.;
Kellogg, R. M.; Deroover, G. Org. Process Res. Dev. 2010, 14, 908−911.
(b) Maarten, W.; van der Meijden, M.; Leeman, M.; Gelens, E.;
H
dx.doi.org/10.1021/ja303566g | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX