pubs.acs.org/joc
SCHEME 1. Copper(II)-Catalyzed Formation of 2,5-Dihydro-
pyrroles
Lewis Acid Catalyzed Indole Synthesis via
Intramolecular Nucleophilic Attack of
Phenyldiazoacetates to Iminium Ions
Lei Zhou and Michael P. Doyle*
Department of Chemistry and Biochemistry, University of
Maryland, College Park, Maryland 20742
of N-aryl amides with ethyl diazoacetate.6 However, efficient
methods for the synthesis of indoles from simple precursors
continue to be of great value. Diazoacetates and aryldiazoa-
cetates have been widely employed under catalytic conditions
for many organic transformations, including cyclopropana-
tion,7 insertion,8 and ylide formation and subsequent reac-
tions.9,10 Aziridination using imine and diazoacetate catalyzed
by either Lewis acids11 or Brønsted acids12 is also well-known.
In 2003, we reported the synthesis of dihydropyrroles from
vinyldiazoacetates and imines, and in that report, we provided
evidence for copper(II)-catalyzed formation of 2,5-dihydro-
pyrroles by activation of the imine toward electrophilic addi-
tion to the diazo carbon of the vinyldiazoacetate (Scheme 1).13
We now report an intramolecular analogue of the imine
diazoacetate reaction that can be performed with a broad
selection of inexpensive Lewis acids with catalyst loadings at/
or below 1.0 mol %.
Methyl N-substituted iminophenyldiazoacetates (2) were
synthesized efficiently by reactions of p-nitrobenzenesulfo-
nylazide (PNBSA), DBU, and methyl 2-arylmethyleneami-
nophenylacetates (1) that were prepared in quantitative yield
from methyl o-aminophenylacetate and aryl and vinyl-sub-
stituted aldehydes (Scheme 2). In the simplest case, methyl
diazo(2-phenylmethyleneaminophenyl)acetate was treated
with a broad spectrum of Lewis acids, each at 1.0 mol %.
Reaction times and product yields are given in Table 1.
Reaction times were determined by monitoring the reaction
solution every 5 min. As can be seen from these results, a wide
variety of catalysts are suitable, but two were selected for
Received September 28, 2009
Lewis acids catalyze the cyclization of methyl phenyldia-
zoacetates with an ortho-imino group, prepared from
o-aminophenylacetic acid, to give 2,3-substituted indoles
in quantitative yields.
Indoles are referred to as “privileged structures” in drug
discovery because of their capacity to bind to many receptors
with high affinity. The synthesis of indoles has been of con-
siderable interest to organic chemists for more than a century.1
Many powerful methodologies for the synthesis of these
heterocycles have been developed, including the Fisher indole
synthesis,2 heteroannulation and cyclization of 2-alkynylani-
lines,3 a metal-catalyzed cascade reaction,4 intramolecular
C-H amination of azidoacrylates,5 and a domino reaction
(6) Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526–
13527.
(7) (a) Davies, H. M. L.; Venkataramani, C. Org. Lett. 2003, 5, 1403–
1406. (b) Nagashima, T.; Davies, H. M. L. Org. Lett. 2002, 4, 1989–1992.
(c) Nagashima, T.; Davies, H. M. L. J. Am. Chem. Soc. 2001, 123, 2695–
2696.
(1) (a) Saxton, J. E. Nat. Prod. Rep. 1997, 14, 559–590. (b) Robinson, B.
Chem. Rev. 1963, 63, 370–401.
(2) (a) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 10251–10263. (b) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew.
Chem., Int. Ed. 2008, 47, 2304–2307.
(8) (a) Zhu, S. F.; Chen, C.; Cai, Y.; Zhou, Q. L. Angew. Chem., Int. Ed.
2008, 47, 932–934. (b) Chen, C.; Zhu, S. F.; Liu, B.; Wang, L. X.; Zhou, Q. L.
J. Am. Chem. Soc. 2007, 129, 12616–12617. (c) Maier, T. C.; Fu, G. C. J. Am.
Chem. Soc. 2006, 128, 4594–4595. (d) Liu, B.; Zhu, S. F.; Zhang, W.; Chen,
C.; Zhou, Q. L. J. Am. Chem. Soc. 2007, 129, 5834–5835.
(9) (a) Doyle, M. P.; Hu, W. H.; Timmons, D. J. Org. Lett. 2001, 3, 933–
935. (b) Doyle, M. P.; Hu, W. H.; Timmons, D. J. Org. Lett. 2001, 3, 3741–
3744. (c) Doyle, M. P.; Forbes, D. C.; Vasbinder, M. M.; Peterson, C. S.
J. Am. Chem. Soc. 1998, 120, 7653–7654.
(10) (a) Xu, X. F.; Zhou, J.; Yang, L. P.; Hu, W. H. Chem. Commun. 2008,
6564–6566. (b) Zhang, X.; Huang, H. X.; Guo, X.; Guan, X. Y; Yang, L. P.;
Hu, W. H. Angew. Chem., Int. Ed. 2008, 47, 6647–6649.
(11) (a) Antilla, J. C.; Wulff, W. D. J. Am. Chem. Soc. 1999, 121, 5099–
5100. (b) Antilla, J. C.; Wulff, W. D. Angew. Chem., Int. Ed. 2000, 39, 4518–
4521. (c) Patwardhan, A. P.; Pulgam, V. R.; Zhang, Y.; Wulff, W. D. Angew.
Chem., Int. Ed. 2005, 44, 6169–6172. (d) Lu, Z.; Zhang, Y.; Wulff, W. D.
J. Am. Chem. Soc. 2007, 129, 7185–7194.
(3) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Parisi, L. M.
J. Org. Chem. 2005, 70, 6213–6217. (b) Trost, B. M.; McClory, A. Angew.
Chem., Int. Ed. 2007, 46, 2074–2077. (c) Li, G. T.; Huang, X. G.; Zhang,
L. M. Angew. Chem., Int. Ed. 2008, 47, 346–349. (d) Carious, K.; Ronan, B.;
Mignani, S.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2007, 46,
1881–1884. (e) Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto,
Y. Angew. Chem., Int. Ed. 2007, 46, 2284–2287. (f) Ohno, H.; Ohta, Y.; Oishi,
S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295–2298.
(4) (a) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776–
5777. (b) Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen,
M. Angew. Chem., Int. Ed. 2008, 47, 888–890. (c) Leogane, O.; Lebel, H.
ꢀ
Angew. Chem., Int. Ed. 2008, 47, 350–352. (d) Barluenga, J.; Jimenez-Aquino,
A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 1529–1532. (e) Chen,
ꢀ
Y.; Wang, Y. J.; Sun, Z. M.; Ma, D. W. Org. Lett. 2008, 10, 625–628. (f) Fayol,
A.; Fang, Y. Q.; Lautens, M. Org. Lett. 2006, 8, 4203–4206. (g) Coleman,
C. M.; O’Shea, D. F. J. Am. Chem. Soc. 2003, 125, 4054–4055.
(5) Stokes, B. J.; Dong, H.-J.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G.
J. Am. Chem. Soc. 2007, 129, 7500–7501.
(12) Hashimoto, T.; Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008,
130, 14380–14381.
(13) Doyle, M. P.; Yan, M.; Hu, W. H.; Gronenberg, L. S. J. Am. Chem.
Soc. 2003, 125, 4692–4693.
9222 J. Org. Chem. 2009, 74, 9222–9224
Published on Web 11/11/2009
DOI: 10.1021/jo902089e
r
2009 American Chemical Society