Job/Unit: O40032
/KAP1
Date: 29-04-14 18:32:30
Pages: 7
Regioselective Hydrodebromination of Polybrominated Indoles
products methyl 3,5-dibromo-1H-indole-1-carboxylate (12),[4e] 3,5-
dibromo-1H-indole (11),[4e] 3-bromo-1-methyl-1H-indole (17),[12]
(dd, J = 8.8, 2.0 Hz, 1 H), 7.13 (d, J = 8.8 Hz, 1 H), 7.00 (s, 1 H),
3.72 (s, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 134.9,
3,5,6-tribromo-1-methyl-1H-indole (21),[4b] 5-bromo-1-methyl-1H- 128.9, 128.8, 125.5, 121.8, 113.5, 111.0, 88.5, 33.2 ppm. C9H7Br2N
indole (23)[16] and 5,6-dibromo-1-methyl-1H-indole[15] were iden-
tical to those reported in the literature.
(288.97): calcd. C 37.41, H 2.44, N 4.85; found C 37.22, H 2.48, N
4.89.
General Procedures for the Hydrodebromination of Polybrominated
Indoles
Supporting Information (see footnote on the first page of this arti-
1
cle): H and 13C NMR spectra for all new compounds.
Method A: Anhydrous THF (13.2 mL) was degassed by bubbling
argon for a few minutes, then Pd(OAc)2 (7.2 mg, 0.033 mmol,
5 mol-%) and PPh3 (17.7 mg, 1.132 mmol, 20 mol-%) were added,
and the resulting mixture was stirred at room temperature for
30 min. The halogenated heterocycle (0.66 mmol), TMEDA
(0.260 g, 2.24 mmol, 3.4 equiv.) and finally NaBH4 (85.0 mg,
2.24 mmol, 3.4 equiv.) were introduced in sequence. The mixture
was stirred at room temperature under argon for the proper time.
The residue was taken up in brine and extracted with ethyl acetate.
The organic phase was separated, dried, the solvent was evapo-
rated, and the residue was purified by flash chromatography (mix-
tures of petroleum ether/ethyl acetate) to give pure bromoindoles.
Acknowledgments
We are grateful to Regione Autonoma della Sardegna (RAS) for
financial support (project CRP-26417).
[1] a) J. Ludwig, S. Bovens, C. Brauch, A. S. Elfringhoff, M. J.
Lehr, J. Med. Chem. 2006, 49, 2611–2620; b) W. Frohner, B.
Monse, T. M. Braxmeier, L. Casiraghi, H. Sahagun, P. Seneci,
Org. Lett. 2005, 7, 4573–4576; c) K. C. Nicolaou, S. A. Snyder,
X. H. Huang, K. B. Simonsen, A. E. Koumbis, A. Bigot, J.
Am. Chem. Soc. 2004, 126, 10162–10173; d) M. Rawat, W. D.
Wulff, Org. Lett. 2004, 6, 329–332; e) D. W. Yue, R. C. Larock,
Org. Lett. 2004, 6, 1037–1040; f) M. W. Hooper, M. Utsuno-
miya, J. F. Hartwig, J. Org. Chem. 2003, 68, 2861–2873.
[2] For reviews, see: a) M. E. Welsch, S. A. Snyder, B. R.
Stockwell, Curr. Opin. Chem. Biol. 2010, 14, 347–361; b) F. R.
De Sá Alves, E. J. Barreiro, C. A. M. Fraga, Mini-Rev. Med.
Chem. 2009, 9, 782–793; c) S. Cacchi, G. Fabrizi, Chem. Rev.
2005, 105, 2873–2920; d) R. Chinchilla, C. Nájera, M. Yus,
Chem. Rev. 2004, 104, 2667–2722; e) D. A. Horton, G. T.
Bourne, M. L. Smyth, Chem. Rev. 2003, 103, 893–930; f) P.
Lloyd-Williams, E. Giralt, Chem. Soc. Rev. 2001, 30, 145–157;
g) H. J. Knölker, K. R. Reddy, Chem. Rev. 2002, 102, 4303–
4428; h) G. W. Gribble, Environ. Sci. Pollut. Res. Int. Environ.
Sci. Pollut. Res. 2000, 7, 37–49; i) G. W. Gribble, Chem. Soc.
Rev. 1999, 28, 335–346; j) G. T. Crisp, Chem. Soc. Rev. 1998,
27, 427–436.
[3] a) T. Kamada, K. C.-S. Vairappan, Nat. Prod. Commun. 2013,
8, 287–288; b) R.-P. Wang, H.-W. Lin, L.-Z. Li, P.-Y. Gao, Y.
Xu, S.-J. Song, Biochem. Syst. Ecol. 2012, 43, 210–213; c) A.
Longeon, B. R. Copp, E. Quévrain, M. Rouè, B. Kientz, T.
Cresteil, S. Petek, C. Debitus, M.-L. Bourguet-Kondracki,
Mar. Drugs 2011, 9, 879–888; d) P. M. Pauletti, L. S. Cintra,
C. G. Braguine, A. A. da Silva Filho, M. L. A. Silva, W. R.
Cunha, A. H. Januário, Mar. Drugs 2010, 8, 1526–1549; e) A. J.
Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010,
110, 4489–4498; f) H. Su, Z. H. Yuan, J. Li, S. J. Gou, L. P.
Deng, L. J. Han, X. Bin Zhu, D. Y. Shi, Chin. Chem. Lett.
2009, 20, 356–366; g) W. Gul, M. T. Hamann, Life Sci. 2005,
78, 442–453.
[4] a) P. S. R. Mitchell, I. F. Sengul, H. Kandemir, S. J. Nugent, R.
Chen, P. K. Bowyer, N. Kumar, D. S. Black, Tetrahedron 2012,
68, 8163–8171; b) T. B. Parsons, C. Ghellamallah, L. Male, N.
Spencer, R. S. Grainger, Org. Biomol. Chem. 2011, 9, 5021–
5023; c) E. M. Boyd, J. Sperry, Synlett 2011, 826–830; d) M. F.
Ibad, M. Hussain, O.-R. Abid, A. Ali, I. Ullah, D. S. Zinad,
P. Langer, Synlett 2010, 411–414; e) O. R. Suárez-Castillo,
L. Beiza-Granados, M. Melenéz-Rodriguez, A. Álvarez-
Hernández, M. S. Morales-Ríos, P. Joseph-Nathan, J. Nat.
Prod. 2006, 69, 1596–1600; f) Y. Liu, G. W. Gribble, J. Nat.
Prod. 2002, 65, 748–749; g) S. Tang, J.-H. Li, Y.-X. Xie, N.-X.
Wang, Synlett 2007, 1535–1541 and references cited therein.
[5] For a review, see: G. Chelucci, S. Baldino, G. A. Pinna, G.
Pinna, Curr. Org. Chem. 2012, 16, 2918–2941.
Method B: A mixture of the halogenated heterocycle (0.66 mmol)
in anhydrous THF (13.2 mL) was degassed by bubbling argon for
a few minutes. Then, PdCl2(dppf)·CH2Cl2 (27.0 mg, 0.033 mmol,
5.0 mol-%), TMEDA (0.260 g, 2.24 mmol, 3.4 equiv.) and finally
NaBH4 (85.0 mg, 2.24 mmol, 3.4 equiv.) were introduced in se-
quence. The mixture was stirred at room temperature under argon
for the specific time and then worked up as described above.
Method C: The procedure of Method A was applied except that
TMEDA (0.133 g, 1.32 mmol, 2.0 equiv.) and NaBH4 (50.0 mg,
1.32 mmol, 2.0 equiv.) were used.
Method D: The procedure of Method B was applied except that
TMEDA (0.133 g, 1.32 mmol, 2.0 equiv.) and NaBH4 (50.0 mg,
1.32 mmol, 2.0 equiv.) were used.
Methyl 3-Bromo-1H-indole-1-carboxylate (4): Oil. 1H NMR
(400.1 MHz, CDCl3): δ = 8.14 (d, J = 0.8 Hz, 1 H), 7.63 (s, 1 H),
7.51 (d, J = 7.6 Hz, 1 H), 7.37 (dt, J = 7.6, 1.2 Hz, 1 H), 7.31 (dt,
J = 7.6, 1.2 Hz, 1 H), 4.01 (s, 3 H) ppm. 13C NMR (100.6 MHz,
CDCl3): δ = 150.6, 134.5, 129.3, 125.6, 124.3, 123.5, 119.5, 115.0,
98.8, 54.0 ppm. C10H8BrNO2 (254.08): calcd. C 47.27, H 3.17, N
5.51; found C 47.65, H 3.13, N 5.56.
Methyl 3,6-Dibromo-1H-indole-1-carboxylate (6): White solid. M.p.
106–107 °C. 1H NMR (400.1 MHz, CDCl3): δ = 8.33 (s, 1 H), 7.60
(s, 1 H), 7.43 (dd, J = 8.4, 1.6 Hz, 1 H), 7.36 (d, J = 8.4 Hz, 1 H),
4.05 (s, 3 H) ppm. 13C NMR (100.6 MHz, CDCl3): δ = 150.3,
135.0, 128.3, 126.9, 124.8, 120.8, 119.6, 118.2, 98.6, 54.3 ppm.
C10H7Br2NO2 (332.98): calcd. C 36.07, H 2.12, N 4.21; found C
36.35, H 2.15, N 4.18.
Methyl 3,5,6-Tribromo-1H-indole-1-carboxylate (13): White solid.
M.p. 134–136 °C. 1H NMR (400.1 MHz, CDCl3): δ = 8.42 (s, 1 H),
7.72 (s, 1 H), 7.60 (s, 1 H), 4.06 (s, 3 H) ppm. 13C NMR
(100.6 MHz, CDCl3): δ = 150.0, 133.7, 129.9, 125.8, 123.9, 121.6,
119.9, 119.5, 97.3, 54.5 ppm. C10H6Br3NO2 (411.87): calcd. C
29.16, H 1.47, N 3.40; found C 29.44, H 1.43, N 3.45.
3,6-Dibromo-1-methyl-1H-indole (19): Oil. 1H NMR (400.1 MHz,
CDCl3): δ = 7.43 (d, J = 1.6 Hz, 1 H), 7.31 (d, J = 8.4 Hz, 1 H),
7.26 (d, J = 8.4 Hz, 1 H, 0.8 Hz), 6.99 (s, 1 H), 3.68 (s, 3 H) ppm.
13C NMR (100.6 MHz, CDCl3): δ = 136.9, 128.3, 126.2, 123.4,
120.6, 116.4, 112.5, 89.6, 33.1 ppm. C9H7Br2N (288.97): calcd. C
37.41, H 2.44, N 4.85; found C 37.88, H 2.41, N 4.81.
[6] Y. Liu, G. W. Gribble, Tetrahedron Lett. 2000, 41, 8717–8721.
[7] M. Hussain, T. T. Dang, P. Langer, Synlett 2009, 1822–1826.
[8] I. Kawasaki, M. Yamashita, S. Ohta, Chem. Pharm. Bull. 1996,
44, 1831–1839.
3,5-Dibromo-1-methyl-1H-indole (22): White solid. M.p. 59–60 °C.
1H NMR (400.1 MHz, CDCl3): δ = 7.67 (d, J = 2.0 Hz, 1 H), 7.31
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5