C O M M U N I C A T I O N S
Science and Technology and was partially funded by U.S. Air Force
(Air Force Office of Scientific Research) under Grant FA2386-09-
1-4116. E.S. acknowledges the KOSEF grant funded by the Korea
government (MEST) (No. 2009-0054064). J.K.K., E.L., and M.C.K.
acknowledge a fellowship of the BK21 program.
Supporting Information Available: Detailed synthetic procedures,
1H NMR and 13C NMR data. This material is available free of charge
Figure 6. Schematic representation of reversible transformation of helical
coils and straight rods of elliptical macrocycles.
References
subsequently determined to be 40 °C by turbidity measurements.
(Figure S8). At room temperature, the ethylene oxide chains are
fully hydrated and thus adopt a random coil conformation. Above
the LCST, they are dehydrated to be hydrophobic. As a result, the
aromatic cycles are more closely packed due to enhanced hydro-
phobic environments. This packing consideration is reflected in the
increased extent of fluorescence quenching upon heating (Figure
4c).12 The strengthened π-π interactions would lead to a more
planar conformation of the elliptical macrocycles. This is supported
by temperature-dependent UV-vis (Figure 4a) and CD measure-
ments (Figure 4b). Upon heating to the LCST, an absorption
maximum is red-shifted by ∼10 nm and the shape of the CD
spectrum changes, indicating the transformation into a different
helical structure through a molecular reorganization within the
cylindrical superstructure.13 The bathochromic shift in both an
absorption maximum in UV-vis and a zero crossing point in CD
may be attributed to the transformation of a conformer with more
conjugation within the macrocycle.14 Consequently, the closely
packed macrocycles with a more flat conformation are staggered
with respect to each other with a one-handedness along the stacking
axis to form helical rods (Figure 6). Therefore, it can be considered
that the structural transformation from helical coils to straight rods
is accompanied by the conformational change of the boat-shaped
macrocycle into a more planar conformation.
In summary, we have demonstrated that, as the molecular length
of an elliptical macrocycle is increased, the self-assembled structure
changes from spherical micelles to helical coils and finally to
monolayered vesicles, in the order of decreasing interfacial
curvature. The most notable feature of the elliptical macrocycles
investigated here is their ability to self-assemble into helical coils.
More importantly, the helical coils reversibly transform into straight
rods upon heating while maintaining the supramolecular chirality.
This structural transition is accompanied by conformational change
of the elliptical macrocycles from a boat conformation to a more
planar conformation. The thermoresponsive feature of the helical
fibers represents a significant contrast to other dynamic helical fibers
which show a simple extension-contraction motion or unfold into
random coils with loss of supramolecular chirality.15 Such cylindri-
cal aggregates with dynamic structural changes may provide a new
strategy for creating intelligent nanomaterals with internal channels.
(1) (a) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45, 4416–4439.
(b) Ho¨ger, S. Chem.sEur. J. 2004, 10, 1320–1329. (c) Zhao, D.; Moore,
J. S. Chem. Commum. 2003, 807–818. (d) Yamaguchi, Y.; Yoshida, Z.-i
Chem.sEur. J. 2003, 9, 5430–5440. (e) Chan, J. M. W.; Tischler, J. R.;
Kooi, S. E.; Bulovic´, V.; Swager, T. M. J. Am. Chem. Soc. 2009, 131,
5659–5666. (f) Grave, C.; Schlu¨ter, A. D. Eur. J. Org. Chem. 2002, 3075–
3098.
(2) (a) Balakrishnan, K.; Datar, A.; Zhang, W.; Yang, X.; Naddo, T.; Huang,
J.; Zuo, J.; Yen, M.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2006, 128,
6576–6577. (b) Rosselli, S.; Ramminger, A.-D.; Wagner, T.; Lieser, G.;
Ho¨ger, S. Chem.sEur. J. 2003, 9, 3481–3491. (c) Rosselli, S.; Ramminger,
A.-D.; Wagner, T.; Silier, B.; Wiegand, S.; Ha¨uꢀler, W.; Lieser, G.;
Scheumann, V.; Ho¨ger, S. Angew. Chem., Int. Ed. 2001, 40, 3137–3141.
(d) Gallant, A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2003, 42,
5307–5310. (e) Ryu, J.-H.; Oh, N.-K.; Lee, M. Chem. Commum. 2005,
1770–1772.
(3) (a) Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew. Chem., Int. Ed. 2006, 45,
7526–7530. (b) Wang, D.; Hsu, J. F.; Bagui, M.; Dusevich, V.; Wang, Y.;
Liu, Y.; Holder, A. J.; Peng, Z. Tetrahedron Lett. 2009, 50, 2147–2149.
(4) (a) Snir, Y.; Kamien, R. D. Science 2005, 307, 1067. (b) Lee, C. C.; Grenier,
C.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Soc. ReV. 2009, 38, 671–
683. (c) Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644–
656.
(5) (a) Liu, W.-J.; Zhou, Y.; Zhou, Q.-F.; Ma, Y.; Pei, J. Org. Lett. 2008, 10,
2123–2126. (b) Ho¨ger, S.; Enkelmann, V. Angew. Chem., Int. Ed. 1995,
34, 2713–2716. (c) Tobe, Y.; Utsumi, N.; Kawabata, K.; Naemura, K.
Tetrahedron Lett. 1996, 37, 9325–9328.
(6) (a) Zheng, Y.; Won, Y.-Y.; Bates, F. S.; Davis, H. T.; Scriven, L. E.;
Talmon, Y. J. Phys. Chem. B 1999, 103, 10331–10334. (b) Li, Z.;
Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P. Science 2004,
306, 98–101. (c) Lee, E.; Jeong, Y.-H.; Kim, J.-K.; Lee, M. Macromolecules
2007, 40, 8355–8360.
(7) (a) Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127,
16333–16337. (b) Kim, J.-K.; Lee, E.; Huang, Z.; Lee, M. J. Am. Chem.
Soc. 2006, 128, 14022–14023.
(8) (a) Zupancich, J. A.; Bates, F. S.; Hillmyer, M. A. Macromolecules 2006,
39, 4286–4288. (b) Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995, 11,
1448–1456.
(9) See Supporting Information.
(10) (a) Harrison, W. J.; Mateer, D. L.; Tiddy, G. J. T. J. Phys. Chem. 1996,
100, 2310–2321. (b) Adachi, K.; Chayama, K.; Watarai, H. Langmuir 2006,
22, 1630–1639. (c) Wu¨rthner, F. Chem. Commun. 2004, 1564–1579.
(11) (a) Dormidontova, E. E. Macromolecules 2002, 35, 987–1001. (b) Kim,
J.-K.; Lee, E.; Lim, Y.-b.; Lee, M. Angew. Chem., Int. Ed. 2008, 47, 4662–
4666.
(12) Moon, K.-S.; Kim, H.-J.; Lee, E.; Lee, M. Angew. Chem., Int. Ed. 2007,
46, 6807–6810.
(13) George, S. J.; Ajayaghosh, A.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer,
E. W. Angew. Chem., Int. Ed. 2004, 43, 3422–3425.
(14) Chen, Z.; Baumeister, U.; Tschierske, C.; Wu¨rthner, F. Chem.sEur. J. 2007,
13, 450–465.
(15) (a) Kim, H.-J.; Lee, E.; Park, H.-s.; Lee, M. J. Am. Chem. Soc. 2007, 129,
10994–10995. (b) Kim, H.-J.; Lim, Y.-b.; Lee, M. J. Polym. Sci., Part A
2008, 46, 1925–1935. (c) Yashima, E.; Maeda, K.; Sato, O. J. Am. Chem.
Soc. 2001, 123, 8159–8160. (d) Prince, R. B.; Saven, J. G.; Wolynes, P. G.;
Moore, J. S. J. Am. Chem. Soc. 1999, 121, 3114–3121. (e) Zhong, S.; Cui,
H.; Chen, Z.; Wooley, K. L.; Pochan, D. J. Soft Matter 2008, 4, 90–93.
Acknowledgment. This work was supported by the National
Creative Research Initiative Program of the Korean Ministry of
JA907462H
9
17770 J. AM. CHEM. SOC. VOL. 131, NO. 49, 2009