4
Tetrahedron Letters
9
9
73
N
N
N
10
11
4
75c
N
H
O2N
3.5
67c
12
13
14
5
5
6
63
85
83
15
5
88
aReaction of different substituted nitriles (1 equiv) with sodium azide (3 equiv) in the presence of 30 mol% of CAN supported HY-zeolite as a catalyst and DMF
as a medium at 110 °C.
bIsolated Yield.
cNovel Compounds.
3. (a) Butler, R. N. Adv. Heterocycl. Chem. 1977, 21, 323. (b) Malik,
M. A.; Wani, M. Y.; Al-Thabaiti, S. A.; Shiekh, R. A. J. Incl.
Any of the substituent at the ortho position led to slightly
lower yield with longer reaction time (Table 4, Entries 2, 8 & 9)
Phenom. Macrocycl. Chem. 2014, 78, 15.
which may be attributed to the steric effect. Benzylic nitriles also
smoothly reacted in this protocol providing the corresponding
4. Ellis, E. P.; West, G. B.; Progress in Medicinal Chemistry;
Biomedical Press, 1980, vol. 17, pp 151.
tetrazoles in good yields (Table 4, Entries 14 & 15). This
cycloaddition reaction works well with disubstituted aromatic
nitriles, but the yields were relatively lower (Table 4, Entries 10-
12).
5. Narender Rao, S.; Ravisankar, T.; Latha, J.; Sudhakar Babu, K.
Der Pharma Chem. 2012, 4, 1093.
6. Narasaiah, T.; Subba, D.; Rasheed, S.; Madhava, G.; Srinivasulu,
D.; Brahma Naidu, P.; Naga Raju, C. Der Pharm Lett. 2012, 4,
854.
7. Ahmad Malik, M.; Al-Thabaiti, S. A.; Malik, M. A. Int. J. Mol.
Sci. 2012, 13, 10880.
In conclusion, we have demonstrated a simple, novel and
practical method for the synthesis of 5-substituted-1H-tetrazoles
via the [2+3] cycloaddition of nitriles and sodium azide using 30
mol% of CAN supported HY-zeolite as a green catalyst. Salient
features of this protocol are excellent yields, shorter reaction
times, mild conditions, easy availability of catalyst, elimination
of toxic hydrazoic acid and simple work-up procedure.
8. Bepary, S.; Das, B. K.; Bachar, S. C.; Kundu, J. K.; Shamsur rouf,
A. S.; Datta, B. K. Pak. J. Pharm. Sci. 2008, 21, 295.
9. Li, J.; Chen, S. Y.; Tino, J. A. Bioorg. Med. Chem. Lett. 2008, 18,
5.
10. Nachman, R. J.; Coast, G. M.; Kaczmarek, K.; Williams, H. J.;
Zabrocki, J. Acta Biochim. Pol. 2004, 51, 121.
11. Camilleri, P.; Kerr, M. W.; Newton, T. W.; Bowyer, J. R. J. Agric.
Food Chem. 1989, 37, 196.
Acknowledgments
12. Beusen, D. D.; Zabrocki, J.; Slomczynska, U.; Head, R. D.; Kao,
J. L. F.; Marshall, G. R. Biopolymers 1995, 36, 181.
13. Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am.
Chem. Soc. 2003, 125, 9983.
14. Lodyga-Chruscinska, E.; Sanna, D.; Micera, G.; Chruscinski, L.;
Olejnik, J.; Nachman, R. J.; Zabrocki, J. Acta Biochim. Pol. 2006,
53, 65.
The authors would like to acknowledge the financial support
received from Council of Scientific and Industrial Research (No.
02(0025)/11/EMR-II), New Delhi, India.
15. Hiskey, M.; Chavez, D. E.; Naud, D. L.; Son, S. F.; Berghout, H.
L.; Bome, C. A. Proc. Int. Pyrotech. Semin. 2000, 27, 3.
16. Koldobskii, G. I.; Ostrovskii, V. A. Usp. Khim. 1994, 63, 847.
17. Tuites, R. C.; Whiteley, T. E.; Minsk, L. M. US Patent 1, 245, 614
1917.
References and notes
1. Butler, R. N. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon:
Oxford, U.K., 1996; Vol. 4.
18. Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139.
19. Moderhack, D. J. Prakt. Chem. 1988, 340, 687.
20. Huisgen, R.; Sauer, J.; Sturm, H. J.; Markgraf, J. H. Chem. Ber.
1960, 93, 2106.
2. (a) Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379; (b) Myznikov,
L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd.
2007, 43, 1; (c) Roh, J.; Vavrova, K.; Hrabalek, A. Eur. J. Org.
Chem. 2012, 6101; (d) Koldobskii, G. I. Russ. J. Org. Chem. 2006,
42, 487.