C O M M U N I C A T I O N S
framework of bioactivity37 and natural product38 interest. Similarly,
compounds 7 and 9, whose origins are rooted in the combined DoM/
Suzuki-Miyaura methodology, were transformed into heterobiaryls
839 and 10,40 respectively.41 The inertness of the O-carbamate to
Pd-catalyzed coupling allows it to assume an orthogonal cross-
coupling partner role when linked with the Ni coupling strategy.
The 1,2,3-substitution pattern of heterobiaryl 8 is unique, while
compound 10 represents a class of pyridines with nonidentical diaryl
substitution for which only two synthetic methods are available.42
In summary, an efficient and general Suzuki-Miyaura cross-
coupling reaction of aryl O-carbamates has been demonstrated. The
transformation was optimized for use with only 5 mol % of the
cost-effective, bench-stable catalyst NiCl2(PCy3)2. The critical
dependence of water, a point of potential general significance for
boronic acid coupling reactions, was delineated. The results, together
those of Garg and co-workers,23 especially on the aryl O-sulfamates,
are agreeably complementary for synthetic application. A new
DoM-Ni-catalyzed cross-coupling nexus for the prominent OCO-
NEt2 DMG was established whose orthogonal use with the Pd-
catalyzed Suzuki-Miyaura reaction anticipates further utility in
aromatic and heteroaromatic synthesis.
bearing an attached DMG, see Ihara, H.; Suginome, M. J. Am. Chem. Soc.
2009, 131, 7502–7503.
(15) (a) Sengupta, S.; Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V. J.
Org. Chem. 1992, 57, 4066–4068. (b) See also Dallaire, C.; Kolber, I.;
Gingras, M. Org. Synth. 1992, 78, 42.
(16) Synthesis, coupling and reductive cleavage of phenanthrol 9-O-carbamates:
Rantanen, T.; Jorgensen, K.; Snieckus, V. in progress.
(17) Puumala, K. A., Ph.D. Thesis, University of Waterloo, 1997.
(18) Milburn, R. R.; Snieckus, V. Angew. Chem., Int. Ed. 2004, 43, 888–891.
(19) Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 2519–2522.
(20) For a tabular qualitative order, see: Hartung, C. G.; Snieckus, V. In Modern
Arene Chemistry; Astruc, D., Ed.; Wiley-VCH: Weinheim, Germany, 2002,
330. Recent findings show the greater metalating power of the O-
phosphorodiamidate, OP(O)(NR2)2 DMG: Blackburn, T.; Alessi, M.;
Lampert, H. unpublished results.
(21) Snieckus, V. Chem. ReV. 1990, 90, 879–933.
(22) For application to the synthesis of heterocycles and natural products, see:
(a) Macklin, T. K.; Reed, M. A.; Snieckus, V. Angew. Chem., Int. Ed.
2008, 9, 1507–1509. (b) Macklin, T. K.; Reed, M. A.; Snieckus, V. Eur.
J. Org. Chem. 2008, 9, 1507–1509. (c) For insightful mechanistic studies
on the anionic ortho-Fries rearrangement, see Singh, K. J.; Collum, D. B.
J. Am. Chem. Soc. 2006, 128, 13753–13760.
(23) During the course of our work, we learned of the studies of Garg and co-
workers (accompanying Communication) which, in addition to O-carbamate
systems, significantly expand the Suzuki-Miyaura reaction to carbonates
and O-sulfamates. We are grateful to Prof. Garg for liberal exchange of
results and for agreement to consecutive publication.
(24) Although precautions were taken, Ni(cod)2 was observed to undergo rapid
oxidation when maintained outside of the glove box, thus giving irrepro-
ducible results. This was also noted by Garg and co-workers; see ref 12.
(25) (a) Kieber-Emmons, M. T.; Riordan, C. G. Acc. Chem. Res. 2007, 40, 618–
625. (b) Kieber-Emmons, M. T.; Annaraj, J.; Seo Mi, S.; Van Heuvelen,
K. M.; Tosha, T.; Kitagawa, T.; Brunold, T. C.; Nam, W.; Riordan, C. G.
J. Am. Chem. Soc. 2006, 128, 14230–14231. (c) Lanci, M. P.; Brinkley,
D. W.; Stone, K. L.; Smirnov, V. V.; Roth, J. P. Angew. Chem., Int. Ed.
2005, 44, 7273–7276. (d) Baldwin, M. J. Chemtracts 2003, 16, 701–714.
(26) For observation of metal contaminants in other catalyzed reactions, see:
(a) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48, 2–4. (b)
Plenio, H. Angew. Chem., Int. Ed. 2008, 120, 7060. (c) Arvela, R. K.;
Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Granados, P.; Singer,
R. D. J. Org. Chem. 2005, 70, 161. (d) Alimardanov, A.; Schmieder-van
de Vondervoort, L.; de Vries, A. H. M.; de Vries, J. G. AdV. Synth. Catal
2004, 346, 1812–1817.
Acknowledgment. We are grateful to NSERC Canada for
sustained support of our research programs. We very much
appreciate the assistance of Dr. Franc¸oise Sauriol (NMR) and Lina
Yuan (HRMS). We offer a special gratitude to Professor Garg
(UCLA) for agreement to consecutive publication.
Supporting Information Available: Detailed experimental proce-
dures and compound characterization data. This material is available
(27) (a) Since addition of water to the boroxine 2b is inaccurate on small-scale
operation, the boronic acids were heated under vacuum for 1-12 h using
Kugelrohr apparatus to achieve a ratio of boroxine:boronic acid of 10:1.
References
1
The ratio was then determined by H NMR immediately prior to use (see
Supporting Information). (b) For comment on similar observations, see:
Storgaard, M.; Ellman, J. A. Org. Synth. 2009, 86, 360–373.
(28) (a) Tokunaga, Y.; Ueno, H.; Shimomura, Y.; Seo, T. Heterocycles 2002,
57, 787–790. (b) Catalyzed cross-couplings of boroxines: Goossen, L. J.;
Paetzold, J. AdV. Synth. Catal 2004, 346, 1665–1668. Gray, M.; Andrews,
I. P.; Hook, D. F.; Kitteringham, J.; Voyle, M. Tetrahedron Lett. 2000, 41,
6237–6240.
(29) No 2-naphthol or any other product was isolated or detected by GC/MS
under these conditions.
(30) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009,
131, 8815–8823.
(31) See Supporting Information.
(32) Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8657–8660.
(33) These conditions were crucial for achievement of efficient cross-coupling,
especially for ortho-substituted O-carbamates. Using previously reported
conditions12 (Table 1, entry 7), no product or poor yield of product was
obtained.
(34) During the preparation of this manuscript, Shi reported this transformation: Yu,
D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.; Shi, Z.-J.
Org. Lett. 2009, 11, 3374–3377.
(1) (a) Negishi, E.-I. Bull. Chem. Soc. Jpn. 2007, 80, 233–257. (b) Corbet, J.;
Mignani, G. Chem. ReV. 2006, 106, 2651–2710. (c) Metal-Catalyzed Cross-
Coupling Reactions; Diederich, F., Meijere, A., Eds.; Wiley-VCH: Wein-
heim, 2004; Vol. 2. (d) Handbook of Organopalladium Chemistry for
Organic Synthesis; Negishi, E.-I., Ed.; Wiley-Interscience: New York, 2002.
(2) (a) Synthesis of Biaryls; Cepanec, I. Elsevier: Amsterdam, Netherlands.
2004; 17-29. (b) Sainsbury, M. Tetrahedron 1980, 36, 3327–3359. (c)
Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. ReV. 1976, 76, 509–562. (d)
Hey, D. H. Q. ReV. Chem. Soc. 1971, 25, 483–499.
(3) (a) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685–4696. (b) Miyaura, N. Top. Curr. Chem. 2002,
219, 11–59. (c) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
4176–4211.
(4) (a) Zim, D.; Monteiro, A. L. Tetrahedron Lett. 2004, 43, 4009–4011. (b)
Yoshikai, N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127,
17978–17979.
(5) (a) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem. Soc. 2004, 10, 3058–3059. (b)
Zim, D.; Lando, V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 19,
3049–3051.
(6) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060–1065.
(7) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M. J. Org.
Chem. 1984, 49, 4898–4899. (b) Wenkert, E.; Michelotti, E. L.; Swindell,
C. S. J. Am. Chem. Soc. 1979, 101, 2246–2247.
(35) Chauder, B. A.; Kalinin, A. V.; Snieckus, V. Synthesis 2001, 140–144.
(36) Chauder, B. A.; Kalinin, A. V.; Taylor, N. J.; Snieckus, V. Angew. Chem.,
Int. Ed. 1999, 38, 1435–1438.
(8) Dankwardt, J. W. Angew. Chem., Int. Ed. 2004, 43, 2428–2432.
(9) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47,
4866–4869.
(37) (a) Petasis, N. A.; Butkevich, A. N. J. Organomet. Chem. 2009, 694, 1747–
1753. (b) Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao, G. Q.;
Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc. 2000, 122, 9939–9953.
(38) Veitch, N. C.; Grayer, R. J. Nat. Prod. Rep. 2008, 25, 555–611.
(39) James, C. A.; Coelho, A. L.; Gevaert, M.; Forgione, P.; Snieckus, V. J.
Org. Chem. 2009, 74, 4094–4103.
(10) (a) Ueno, S.; Mizushima, E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc.
2006, 128, 16516–16517. (b) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani,
N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706–2707.
(11) Guan, B.-T.; Wang, Y.; Li, J.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc.
2008, 130, 14468–14470.
(40) Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S.; Lopez, S.;
Snieckus, V. J. Org. Chem. 2007, 72, 1588–1594.
(12) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130,
14422–14423.
(41) The low yield of 8 is a result of reductive cleavage and arylation of
benzofuran rather than low conversion of 7 owing to steric hindrance effects.
(42) (a) Chang, M.-Y.; Lin, C.-Y.; Hung, C.-Y. Tetrahedron 2007, 63, 3312–
3320. (b) Karig, G.; Thasana, N.; Gallagher, T. Synlett 2002, 808–810.
(13) For a highlight, see: Goossen, L. J.; Goossen, K.; Stanciu, C. Angew. Chem.,
Int. Ed. 2009, 48, 3569–3571.
(14) (a) Anctil, J.-G.; Snieckus, V. J. Organomet. Chem. 2002, 653, 150–160.
(b) For a sequential DoM-Suzuki-Miyaura coupling of an arylboronic acid
JA907700E
9
17752 J. AM. CHEM. SOC. VOL. 131, NO. 49, 2009