pubs.acs.org/joc
SCHEME 1
N-Heterocyclic Carbene-Catalyzed Monoacylation
of 1,4-Naphthoquinones with Aldehydes
‡
Marıa Teresa Molina,† Cristina Navarro, ‡ Ana Moreno,
, ‡
ꢀ
and Aurelio G. Csaky*
†
´
Instituto de Quımica Medica (CSIC), C/Juan de la Cierva,
3, 28006-Madrid, Spain and Departamento de Quımica
ꢀ
‡
´
ꢀ
Organica, Facultad de Quımica, Universidad Complutense,
´
28040-Madrid, Spain
“Breslow intermediates”. These can evolve by several reac-
tion pathways, which allows the synthesis of different types
of compounds. Among these reaction pathways, the genera-
tion of acyl azolium intermediates deserves particular atten-
tion, as these species can behave as acylating reagents for
carbon- and heteronucleophiles (Scheme 1).2,3
Received October 20, 2009
Herein, we report (Scheme 2) the NHC-catalyzed reduc-
tion-acylation of 1,4-naphthoquinones (1) with aldehydes
(2) to give the monoacylated 1,4-dihydroxynaphthalenes
4. In particular, high regioselectivity has been observed
when starting from nonsymmetrical 1,4-naphthoquinones.4
Compounds 4 are difficult to prepare selectively by con-
ventional acylation reactions, and are useful intermediates
in the synthesis of highly substituted 1,4-naphthoquinone
derivatives, which constitute relevant pharmaceutical
scaffolds.5,6
The NHC-catalyzed conjugate hydroacylation of 1,4-naph-
thoquinones allows for the synthesis of monoacylated
1,4-dihydroxynaphthalene derivatives. These targets, dif-
ficult to prepare selectively by standard protocols, repre-
sent important intermediates in the elaboration of highly
substituted 1,4-naphthoquinone derivatives, which con-
stitute relevant pharmaceutical scaffolds. High regios-
electivity has been observed in the hydroacylation
reaction when starting from nonsymmetrical quinones.
We have recently undertaken the study of the addition of
different reagents to quinones.7 In the search of a new type
of acylation of quinones, we began the present study by
screening several commercially available azolium salts as
(3) For NHC-catalyzed acylations under oxidative conditions, see:
(a) Guin, J.; De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed.
2008, 47, 8727. (b) Zeilter, K.; Rose, C. A. J. Org. Chem. 2009, 74, 1759.
(c) Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Tetrahedron 2009,
65, 3102. (d) Maki, B. E.; Patterson, E. V.; Cramer, C. J.; Scheidt, K. A. Org.
Lett. 2009, 11, 3942.
N-Heterocyclic carbene (NHC) organocatalysis has be-
come an increasingly popular field in recent times, as it per-
mits a broad range of useful synthetic transformations.1 The
nucleophilic character of NHCs enables their addition to the
carbonyl group of aldehydes, giving rise to the formation of
(4) For chemoselectivity in esterification reactions (perspective), see:
Nahmany, M.; Melman, A. Org. Biomol. Chem. 2004, 2, 1563.
(5) See for example: (a) Mellidis, A. S.; Papageorgiou, V. P. Tetrahedron
Lett. 1986, 27, 5881. (b) Deshpande, P. P.; Martin, O. R. Tetrahedron Lett.
1990, 31, 6613. (c) Hosoya, T.; Takashiro, E.; Yamamoto, Y.; Matsumoto,
T.; Suzuki, K. Heterocycles 1996, 42, 397. (d) Nunes, R. L.; Bieber, L. W.;
Longo, R. L. J. Nat. Prod. 1999, 62, 1643. (e) Ciuffreda, P.; Casati, S.;
Santaniello, E. Tetrahedron 1999, 56, 317. (f) Qabaja, C.; Jones, G. B. J. Org.
Chem. 2000, 65, 7187. (g) Kumamoto, T.; Aoyama, N.; Nakano, S.; Ishikawa,
T.; Narimatsu, S. Tetrahedron: Asymmetry 2001, 12, 791. (h) de Frutos, O.;
Atienza, C.; Echavarren, A. M. Eur. J. Org. Chem. 2001, 163. (i) Foti, M. C.;
Johnson, E. R.; Vinqvist, M. R.; Wright, J. S.; Barclay, L. R. C.; Ingold, K. U.
J.Org. Chem. 2002, 67, 5190.(j) Wang,X.-Y.; Bu, X.-Z.;Liu, P.-Q.; Ma, L.; Xie,
B.-F.; Liu, Z.-C.; Li, Y.-M.; Chan, A. S. C. Synth. Commun. 2006, 36, 2667.
(k) Kimura, M.; Fukasaka, M.; Tamaru, Y. Synthesis 2006, 3611. (l) Krohn, K.;
Diederichs, J.; Riaz, M. Tetrahedron 2006, 62, 1223. (m) Suhara, Y.; Hirota, Y.;
Nakagawa, K.; Kamao, M.; Tsugawa, N.; Okano, T. Biorg. Med. Chem. 2008,
16, 3108.
(1) For recent reviews, see: (a) Enders, D.; Breuer, K. In Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer:
Berlin, Germany, 1999; Vol. 3, p 1093. (b) Enders, D.; Balensiefer, T. Acc. Chem.
Res. 2004, 37, 534. (c) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632.
(d) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506. (e) Enders, D.; Balensiefer,
T.; Niemeier, O.; Christmann, M. In Enantioselective Organocatalysis: Reac-
tions and Experimental Procedures; Dalko, P. I., Ed.; Wiley-VCH: Weinheim,
ꢀ
Germany, 2007; p 331. (f) Marion, N.; Díez-Gonzalez, S.; Nolan, S. P. Angew.
Chem., Int. Ed. 2007, 46, 2988. (g) Enders, D.; Niemeier, O.; Henseler, A Chem.
Rev. 2007, 107, 5606. (h) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev.
2008, 37, 2691.
(2) For leading examples on the use of in situ generated NHC-derived acyl
azolium species as acylating reagents, see ref 1. For some additional recent
examples, see also: (a) Chow, K. Y.-K.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 8126. (b) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem.
Soc. 2004, 126, 9518. (c) Chiang, P.-C.; Kim, Y.; Bode, J. W. Chem. Commun.
2009, 4566. (d) Wang, L.; Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891.
ꢀ
(e) Domingo, L. R.; Aurell, M. J.; Arno, M. Tetrahedron 2009, 65, 3432.
(f) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131,
14190 and references cited therein.
(6) Polysubstituted aroylnaphthalenes have recently been disclosed as
relevant starting materials for biaryl synthesis. See: (a) Quasdorf, K. W.;
Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008, 130, 14422. (b) Guan, B. T.;
Wang, Y.; Li, B. J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 14468.
(c) Li, Z.; Zhang, S. L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009,
131, 8815. See also: (d) Gooβen, L. J.; Gooβen, K.; Stanciu, C. Angew.
Chem., Int. Ed. 2009, 48, 3569.
ꢀ
(7) Molina, M. T.; Navarro, C.; Moreno, A.; Csaky, A. G. Org. Lett.
2009, 11, 4938.
DOI: 10.1021/jo902235h
r
Published on Web 11/25/2009
J. Org. Chem. 2009, 74, 9573–9575 9573
2009 American Chemical Society