C O M M U N I C A T I O N S
Scheme 1
coupling of nitrile and acrylamide followed by keto-amide
cyclization and dehydration in one pot. Further detailed investiga-
tions of the mechanism, the substrate scope, and the application of
this methodology in natural product synthesis are in progress.
Acknowledgment. We thank the National Science Council of
the Republic of China (NSC-96-2113-M-007-020MY3) for support
of this research.
Supporting Information Available: General experimental proce-
dures, characterization details, and crystallographic data (CIF) for 3b
and 3h. This material is available free of charge via the Internet at
79 and 61% yield, respectively (entries 15 and 16). Alkyl nitriles
also worked well for this reaction. Thus, propionitrile (1h) and
butyronitrile (1i) nicely underwent cyclization with 2a to give 3q
and 3r in 78 and 83% yield, respectively (entries 17 and 18).
Under similar reaction conditions, acetonitrile also effectively
reacted with 2a in a highly regioselective manner to provide
pyrrolidinone 3s in 90% yield (eq 1): Very interestingly, reductive
References
(1) (a) Montgomery, J. Acc. Chem. Res. 2000, 33, 467. (b) Ikeda, S. Acc. Chem.
Res. 2000, 33, 511. (c) Song, M.; Montgomery, J. Tetrahedron 2005, 61,
11440. (d) Ng, S.-S.; Jamison, T. F. Tetrahedron 2005, 61, 11405. (e) Jang,
H.-Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653. (f) Moslin, R. M.;
Moslin, K. M.; Jamison, T. F. Chem. Commun. 2007, 4441. (g) Rayabarapu,
D. K.; Cheng, C.-H. Acc. Chem. Res. 2007, 40, 971. (h) Jeganmohan, M.;
Cheng, C.-H. Chem.sEur. J. 2008, 14, 10876.
(2) (a) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890. (b) Ho, C.-Y.;
Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782. (c) Ng, S.-S.; Ho,
C.-Y.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128, 11513. (d) Takimoto,
M.; Kajima, Y.; Sato, Y.; Mori, M. J. Org. Chem. 2005, 70, 8605. (e) Ng,
S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 7320. (f) Hratchian,
H. P.; Chowdhury, S. K.; Gutierrez-Garcia, V. M.; Amarasinghe, K. K. D.;
Heeg, M. J.; Schlegel, H. B.; Montgomery, J. Organometallics 2004, 23,
4636. (g) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc.
2005, 127, 201. (h) Shirakawa, E.; Yamamoto, Y.; Nakao, S.; Oda, T.;
Tsuchimoto, T.; Hiyama, T. Angew. Chem., Int. Ed. 2004, 43, 3448. (i)
Yi, C. S.; Lee, D. W.; Chen, Y. Organometallics 1999, 18, 2043. (j) Ikeda,
S.; Yamamoto, H.; Kondo, K.; Sato, Y. Organometallics 1995, 14, 5015.
(k) Ikeda, S.; Cui, D. M.; Sato, Y. J. Am. Chem. Soc. 1999, 121, 4712. (l)
Zhao, L.; Lu, X. Org. Lett. 2002, 4, 3903. (m) Zhao, L.; Lu, X.; Xu, W.
J. Org. Chem. 2005, 70, 4059. (n) Sato, Y.; Takimoto, M.; Hayashi, K.;
Katsuhara, T.; Takagi, K.; Mori, M. J. Am. Chem. Soc. 1994, 116, 9771.
(o) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (p)
Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998,
120, 4033. (q) Ikeda, S. Angew. Chem., Int. Ed. 2003, 42, 5120. (r) Ni, Y.;
Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743. (s) Patel,
S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (t) Yeh, C.-
H.; Korivi, R. P.; Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 4892.
(3) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M. Acc. Chem. Res. 2002, 35,
695. (d) Wender, P. A.; Bi, F. C.; Gamber, G. G.; Gosselin, F.; Hubbard,
R. D.; Scanio, M. J. C.; Sun, R.; Williams, T. J.; Zhang, L. Pure Appl.
Chem. 2002, 74, 25.
(4) Druliner, J. D.; Blackstone, R. C. J. Organomet. Chem. 1982, 240, 277.
(5) (a) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. J. Am. Chem. Soc. 2002, 124,
9696. (b) Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc.
2007, 129, 4166. (c) Wang, C.-C.; Lin, P.-S.; Cheng, C.-H. Tetrahedron
Lett. 2004, 45, 6203. (d) Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am.
Chem. Soc. 2007, 129, 12032.
(6) Hilt, G.; Treutwein, J. Angew. Chem., Int. Ed. 2007, 46, 8653.
(7) (a) Rayabarapu, D. K.; Sambaiah, T.; Cheng, C.-H. Angew. Chem., Int.
Ed. 2001, 40, 1286. (b) Jayanth, T. T.; Cheng, C.-H. Angew. Chem., Int.
Ed. 2007, 46, 5921. (c) Mannathan, S.; Jeganmohan, M.; Cheng, C.-H.
Angew. Chem., Int. Ed. 2009, 48, 2192. (d) Garcia, P.; Moulin, S.; Miclo,
Y.; Leboeuf, D.; Aubert, C.; Malacria, M. Chem.sEur. J. 2009, 15, 2129.
(8) (a) Murray, W. V.; Lalan, P.; Gill, A.; Addo, M. F.; Lewis, J. M.; Lee,
D. K. H.; Wachter, M. P.; Rampulla, R.; Underwood, D. C. Bioorg. Med.
Chem. Lett. 1993, 369, 785. (b) James, G. D.; Pattendon, G.; Mills, S. D.
Tetrahedron Lett. 1985, 26, 3617. (c) Wu, B.; Kuhen, K.; Nguyen, T. N.;
Ellis, D.; Anaclerio, B.; He, X.; Yang, K.; Karanewsky, D.; Yin, H.; Wolf,
K.; Bieza, K.; Caldwell, J.; He, Y. Bioorg. Med. Chem. Lett. 2006, 16,
3430. (d) Piracetam, Doxapram, and Cotine are widely used pyrrolidinone
drugs.
coupling of benzonitrile with 2a also proceeded to give linear
product 4, but no further keto-amide cyclization step occurred.10
Thus, it is necessary for the nitrile to possess R-protons in order
for the cyclization and dehydration to proceed.
The mechanism of the present reductive coupling cyclization is
intriguing in view of the ability of the catalyst to assemble the two
π components (nitrile and acrylamide) in a highly regio- and
stereoselective manner (Scheme 1). The catalytic cycle is likely
initiated by the reduction of Co(II) to Co(I) by zinc dust. This is
followed by the chemoselective cyclometalation of Co(I) with nitrile
and acrylamide to form cobaltaazacyclopentene intermediate A.
Protonation of A followed by hydrolysis gives intermediate B and
a Co(III) species. The Co(III) species is reduced by zinc to
regenerate the active Co(I) species for the next cycle.11 Intermediate
B further undergoes keto-amide cyclization10 and elimination of
water to give the final pyrrolidinone derivative 3a. Such a
metalloazacyclopentene species has been proposed as a key
intermediate in the RRC reactions catalyzed by nickel complexes.2s,t
The formation of cobaltaazacyclopentene A by the assembly of two
π components is generally regioselective, with the carbon atom
having an electron-withdrawing functionality near the metal
center.5,7 This mechanism explains the regioselectivity of the present
reductive coupling product. In the catalytic reaction, ZnI2 probably
acts as a Lewis acid to remove a halide from the Co(I) center,
assisting the coordination of the nitrile and acrylamide to the metal
center. In addition, it can also activate the keto group in B, assisting
in the cyclization of B to give the final product 3.
(9) Mori, M.; Uesaka, N.; Shibasaki, M. Chem. Commun. 1990, 1222.
(10) (a) Jacobi, P. A.; Brielmann, H. L.; Hauck, S. I. Tetrahedron Lett. 1995,
36, 1193. Jacobi, P. A.; Brielmann, H. L.; Hauck, S. I. J. Org. Chem. 1996,
61, 5013.
(11) Fillon, H.; Gosmini, C.; Perichon, J. J. Am. Chem. Soc. 2003, 125, 3867.
In conclusion, we have successfully developed a novel method
for the synthesis of pyrrolidinones via cobalt-catalyzed reductive
JA9088296
9
J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009 18253