Y. Yin et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6686–6690
6689
Scheme 3. Reagents and conditions: (a) ethyl oxalyl chloride, pyridine, CH2Cl2, 0 °C, 76%; (b) TFA, microwave, 160 °C, 30 min; (c) NaOH, MeOH, H2O, rt; (d) oxalyl chloride,
DMF, CH2Cl2/amine, pyridine, CH2Cl2, 0 °C; (e) 1H-pyrazoleboronic acid pinacol ester, Ph(PPh3)4, K2CO3, dioxane, H2O, 95 °C, 45–63% in four steps.
Benzothiazoles 6g–6l were synthesized via intermediates 13 or
14 which were prepared as shown in Scheme 2. In the presence of
excess sodium perborate tetrahydrate, 4-bromo-2,6-difluoroani-
line (12) was oxidized to nitrobenzene 13. Nucleophilic substitu-
tion of one of the fluorines afforded 14. Compounds 6g–6l were
prepared using 14 and the chemistry described in Scheme 1.
Synthesis of compound 19 (Scheme 3) began with the acylation
of aniline 8 with ethyl oxalyl chloride to give 2-oxoacetate 15.
Microwave-assisted thiol deprotection and cyclization in TFA pro-
duced benzothiazole-2-carboxylate 16, which was hydrolyzed to
acid 17. Finally, amide formation with substituted or unsubstituted
benzyl amines, followed by Suzuki–Miyaura coupling, gave com-
pound 19.
the P-loop which is composed of the side chains of Phe103,
Leu123 and Phe136.
In conclusion, a series of potent and selective ROCK-II inhibitors
based on the benzothiazole scaffold were developed. Compounds
6s (SR6074) and 19h (SR6494) were demonstrated to be highly po-
tent and selective ROCK inhibitors. Future optimizations of these
compounds will be mainly focused on issues such as physicochem-
ical properties, toxicity, and selectivity against other undesirable
protein targets (and a few selected inhibitors will be subjected to
large panel counterscreens).
Acknowledgments
To help understand the binding motif of our benzothiazole
based ROCK inhibitors, inhibitor SR6494 was docked into the cat-
alytic domain of a homology ROCK-II model by methods described
previously.11c The enzyme–ligand complex with the lowest dock-
ing energy is shown in Figure 2. In this mode, the pyrazole group
forms two hydrogen bonds with the enzyme: one between the
backbone carbonyl group of Glu170 and the hydrogen atom of
NH on the pyrazole ring, another between the backbone amino
group of Met172 and another nitrogen atom of the pyrazole ring.
A third hydrogen bond is formed in the phosphate binding site be-
tween the amine side chain of Lys121 and the carboxamide car-
bonyl group of SR6494. A fourth hydrogen bond is formed
between the carbonyl group of Asp232 and the protonated tertiary
amine of the dimethylaminoethyl moiety of the inhibitor. In addi-
tion to these hydrogen bonding interactions, another factor to the
high potency of SR6494 is the hydrophobic interaction between
the benzyl amide phenyl ring and the hydrophobic pocket under
We thank Professor Patrick Griffin and Professor William Roush
for their support. We also acknowledge the resources from the Uni-
versity of Miami Center for Computational Science (CCS publica-
tion #158).
References and notes
1. Nakagawa, O.; Fujisawa, K.; Ishizaki, T.; Saito, Y.; Nakao, K.; Narumiya, S. FEBS
Lett. 1996, 392, 189.
2. (a) Leung, T.; Chen, X. Q.; Manser, E.; Lim, L. Mol. Cell. Biol. 1996, 16, 5313; (b)
Uehata, M.; Ishizaki, T.; Satoh, H.; Ono, T.; Kawahara, T.; Morishita, T.;
Tamakawa, H.; Yamagami, K.; Inui, J.; Maekawa, M.; Narumiya, S. Nature 1997,
389, 990; (c) Somlyo, A. P.; Somlyo, A. V. J. Physiol. 2000, 522, 177; (d) Riento, K.;
Ridley, A. J. Nat. Rev. Mol. Cell. Biol. 2003, 4, 446.
3. (a) Tanihara, H.; Inatani, M.; Honjo, M.; Tokushige, H.; Azuma, J.; Araie, M. Arch.
Ophthalmol. 2008, 126, 309; (b) Whitlock, N. A.; Harrison, B.; Mixon, T.; Yu, X.;
Wilson, A.; Gerhardt, B.; Eberhart, D. E.; Abuin, A.; Rice, D. S. J. Ocul. Pharmacol.
Ther. 2009, 25, 187; (c) Fukunage, T.; Ikesugi, K.; Nishio, M.; Sugimoto, M.;
Sasoh, M.; Hidaka, H.; Uji, Y. Curr. Eye Res. 2009, 34, 42.
4. (a) Gosens, R.; Schaafsma, D.; Nelemans, S. A.; Halayko, A. J. Mini-Rev. Med.
Chem. 2006, 6, 339; (b) Schaafsma, D.; Gosens, R.; Zaagsma, J.; Halayko, A. J.;
Meurs, H. Eur . J. Pharmacol. 2008, 585, 398.
5. Sun, X.; Minohara, M.; Kikuchi, H.; Ishizu, T.; Tanaka, M.; Piao, H.; Osoegawa,
M.; Ohyagi, Y.; Shimokawa, H.; Kira, J. I. J. Neuoimmunol. 2006, 180, 126.
6. (a) Rikitake, Y.; Kim, H. H.; Huang, Z.; Seto, M.; Yano, K.; Asano, T.; Moskowitz,
M. A.; Liao, J. K. Stroke 2005, 36, 2251; (b) Shin, H. K.; Salomone, S.; Ayara, C.
Exp. Opin. 2008, 1547.
7. Ying, H.; Biroc, S.; Li, W. W.; Alicke, B.; Xuan, J. A.; Pagila, R.; Ohashi, Y.; Okada,
T.; Kamata, Y.; Dinter, H. Mol. Cancer Ther. 2006, 5, 2158.
8. Park, K.; Kim, S. W.; Rhu, K. S.; Paick, J. S. J. Sex Med. 2006, 3, 996.
9. Shimokawa, H.; Takeshita, A. Arterioscler. Throm. Vasc. Biol. 2005, 25, 1767.
10. (a) Gingras, K.; Avedissian, H.; Thouin, E.; Boulanger, V.; Essagian, C.;
McKerracher, L.; Lubell, W. Bioorg. Med. Chem. Lett. 2004, 14, 4931; (b)
Takami, A.; Iwakubo, M.; Okada, Y.; Kawata, T.; Odai, H.; Takahashi, N.; Shindo,
K.; Kimura, K.; Tagami, Y.; Miyake, M.; Fukushima, K.; Inagaki, M.; Amano, M.;
Kaibuchi, K.; Iijima, H. Bioorg. Med. Chem. 2004, 12, 2115; (c) Iwakubo, M.;
Takami, A.; Okada, Y.; Kawata, T.; Tagami, Y.; Ohashi, H.; Sato, M.; Sugiyama, T.;
Fukushima, K.; Iijima, H. Bioorg. Med. Chem. 2007, 15, 350; (d) Iwakubo, M.;
Takami, A.; Okada, Y.; Kawata, T.; Tagami, Y.; Ohashi, H.; Kawata, T.; Tagami, Y.;
Sato, M.; Sugiyama, T.; Fukushima, K.; Taya, S.; Amano, M.; Kaibuchi, K.; Iijima,
H. Bioorg. Med. Chem. 2007, 15, 1022; (e) Stavenger, R.; Cui, H.; Dowdell, S.;
Franz, R.; Gaitanopoulos, D.; Goodman, K.; Hilfiker, M.; Ivy, R.; Leber, J.; Marino,
J.; Oh, H.; Viet, A.; Xu, W.; Ye, G.; Zhang, D.; Zhao, Y.; Jolivette, L.; Head, M.;
Semus, S.; Elkins, P.; Kirkpatrick, R.; Dul, E.; Khandekar, S.; Yi, T.; Jung, D.;
Wright, L.; Smith, G.; Behm, D.; Doe, C.; Bentley, R.; Chen, Z.; Hu, E.; Lee, D. J.
Figure 2. Model of SR6494 docked in the catalytic domain of ROCK-II.