C O M M U N I C A T I O N S
metal ions. Confocal microscopy experiments show that NS1 can
be used for detecting changes in Ni2+ levels within living cells.
Future plans will focus on improving the optical brightness and
binding affinities of this first-generation probe as well as applying
NS1 and related chemical tools to probe the cell biology of nickel.
Acknowledgment. We thank the Dreyfus, Packard, and Sloan
Foundations, the Hellman Faculty Fund, Amgen, NSF (CAREER
CHE-0548245), NIH (GM 79465), and HHMI for providing funding
for this work. We thank Holly Aaron (UCB Molecular Imaging
Center) and Ann Fischer and Michelle Yasukawa (UCB Tissue
Culture Facility) for expert technical assistance.
Supporting Information Available: Synthetic and experimental
details. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Sigel, A., Sigel, H., Sigel, R. K. O., Eds. Nickel and Its Surprising Impact
in Nature; John Wiley & Sons Ltd.: U.K., 2007; Vol. 2.
(2) Chivers, P. T.; Sauer, R. T. Protein Sci. 1999, 8, 2494–2500.
(3) Dosanjh, N. S.; Michel, S. L. Curr. Opin. Chem. Biol. 2006, 10, 123–130.
(4) Giedroc, D. P.; Arunkumar, A. I. Dalton Trans. 2007, 3107–3120.
(5) Hausinger, R. P.; Zamble, D. B. In Molecular Microbiology of HeaVy
Metals; Nies, D. H., Silver, S., Eds.; Springer: Heidelberg, Germany, 2007;
pp 287-320.
(6) Wang, S. C.; Dias, A. V.; Zamble, D. B. Dalton Trans. 2009, 2459–2466.
(7) Carrington, P. E.; Chivers, P. T.; Al-Mjeni, F.; Sauer, R. T.; Maroney,
M. J. Nat. Struct. Biol. 2003, 10, 126–130.
(8) Schreiter, E. R.; Sintchak, M. D.; Guo, Y.; Chivers, P. T.; Sauer, R. T.;
Drennan, C. L. Nat. Struct. Biol. 2003, 10, 794–799.
(9) Phillips, C. M.; Schreiter, E. R.; Guo, Y.; Wang, S. C.; Zamble, D. B.;
Drennan, C. L. Biochemistry 2008, 47, 1938–1946.
(10) Iwig, J. S.; Leitch, S.; Herbst, R. W.; Maroney, M. J.; Chivers, P. T. J. Am.
Chem. Soc. 2008, 130, 7592–7606.
(11) Maroney, M. J. Curr. Opin. Chem. Biol. 1999, 3, 188–199.
(12) Drennan, C. L.; Doukov, T. I.; Ragsdale, S. W. J. Biol. Inorg. Chem. 2004,
9, 511–515.
(13) Evans, D. J. Coord. Chem. ReV. 2005, 249, 1582–1595.
(14) Fontecilla-Camps, J. C.; Volbeda, A.; Cavazza, C.; Nicolet, Y. Chem. ReV.
2007, 107, 4273–4303.
Figure 1. (a) Fluorescence response of 2 µM NS1 to Ni2+. Spectra shown
are for Ni2+ concentrations of 0, 2, 5, 10, 15, 25, 35, 50, 75, 100 µM.
Spectra were acquired in 20 mM HEPES, pH 7.1, with 488 nm excitation.
(b) Fluorescence responses of 2 µM NS1 to various metal ions. Bars
represent the final (Ff) over the initial (Fi) integrated emission. Spectra were
acquired in HEPES, pH 7.1. White bars represent the addition of the
competing metal ion to a 2 µM solution of NS1. Black bars represent
addition of 100 µM Ni2+ to the solution. Excitation was provided at 488
nm, with emission integrated over 498-700 nm.
(15) Lindahl, P. A. Angew. Chem., Int. Ed. 2008, 47, 4054–4056.
(16) Ragsdale, S. W. J. Biol. Chem. 2009, 284, 18571–18575.
(17) Xia, W.; Li, H.; Sze, K. H.; Sun, H. J. Am. Chem. Soc. 2009, 131, 10031–
10040.
(18) Goodman, J. E.; Prueitt, R. L.; Dodge, D. G.; Thakali, S. Crit. ReV. Toxicol.
2009, 39, 365–417.
(19) Costa, M.; Davidson, T. L.; Chen, H.; Ke, Q.; Zhang, P.; Yan, Y.; Huang,
C.; Kluz, T. Mutat. Res. 2005, 592, 79–88.
(20) Nemec, A A.; Leikauf, G. D.; Pitt, B. R.; Wasserloos, K. J.; Barchowsky,
A. Am. J. Respir. Cell Mol. Biol. 2009, 41, 69–75.
(21) Domaille, D. W.; Que, E. L.; Chang, C. J. Nat. Chem. Biol. 2008, 4, 168–
175.
(22) Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. ReV. 2008, 108, 1517–
1549.
(23) Torrado, A.; Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1998, 120,
609–610.
(24) Pearce, D. A.; Walkup, G. K.; Imperiali, B. Bioorg. Med. Chem. Lett. 1998,
8, 1963–1968.
(25) Salins, L. L.; Goldsmith, E. S.; Ensor, C. M.; Daunert, S. Anal. Bioanal.
Chem. 2002, 372, 174–180.
Figure 2. Live-cell imaging of intracellular Ni2+ levels by confocal
microscopy. (a) Control A549 cells incubated with a 1:1 mixture of 10 µM
NS1-AM and Pluronic F-127 for 35 min at 37 °C. (b) Cells supplemented
with 1 mM NiCl2 in the growth medium for 18 h at 37 °C and stained with
10 µM NS1-AM and Pluronic F-127 for 35 min at 37 °C. (c) NS1-loaded,
1 mM Ni2+-supplemented cells treated with 1 mM of the divalent metal
(26) Wang, B. Y.; Hu, Y. L.; Su, Z. X. React. Funct. Polym. 2008, 68, 1137–
1143.
(27) Wang, B. Y.; Liu, X. Y.; Hu, Y. L.; Su, Z. X. Polym. Int. 2009, 58, 703–
709.
(28) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Perotti, A.; Taglietti, A.; Sacchi,
D. Chem.sEur. J. 1996, 2, 75–82.
chelator TPEN for 1 min at 25 °C. (D) NS1-loaded, 1 mM Ni2+
-
(29) Bolletta, F.; Costa, I.; Fabbrizzi, L.; Licchelli, M.; Montalti, M.; Pallavicini,
P.; Prodi, L.; Zaccheroni, N. J. Chem. Soc., Dalton Trans. 1999, 1381–
1385.
supplemented cells treated with 1 mM TPEN, stained with 5 µM Hoescht-
3342 to show cell viability. Scale bar ) 20 µm.
(30) Jiang, L. J.; Luo, Q. H.; Wang, Z. L.; Liu, D. J.; Zhang, Z.; Hu, H. W.
Polyhedron 2001, 20, 2807–2812.
the cells are viable throughout the imaging studies (Figure 2d).
These data establish that NS1 can respond to changes in intracellular
Ni2+ levels within living cells.
In closing, we have described the synthesis, spectroscopy, and
application of NS1, a new fluorescent sensor for Ni2+ in biological
samples. NS1 is a unique Ni2+-responsive small-molecule indicator
that features visible excitation and emission profiles and a selective
turn-on response to Ni2+ compared to other biologically relavent
(31) Ke, Q.; Davidson, T.; Kluz, T.; Oller, A.; Costa, M. Toxicol. Appl.
Pharmacol. 2007, 219, 18–23.
(32) Thierse, H. J.; Helm, S.; Pink, M.; Weltzien, H. U. J. Immunol. Methods
2007, 328, 14–20.
(33) Zhao, J.; Bertoglio, B. A.; Devinney, M. J., Jr.; Dineley, K. E.; Kay, A. R.
Anal. Biochem. 2009, 384, 34–41.
(34) Cadosch, D.; Meagher, J.; Gautschi, O. P.; Filgueira, L. J. Neurosci. Methods
2009, 178, 182–187.
(35) Chen, H.; Costa, M. Exp. Biol. Med. 2006, 231, 1474–1480.
JA906500M
9
J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009 18021