B. Su, S. Chen / Bioorg. Med. Chem. Lett. 19 (2009) 6733–6735
6735
Table 1
IC50 of inhibition of LTEDaro breast cancer cells growth by compounds 33–72
References and notes
1. American Cancer Society. Cancer Facts and Figures 2008, Atlanta, 2008.
Compd
Inhibition of LTEDaro cell growth (IC50 lM)
2. Brueggemeier, R. W.; Hackett, J. C.; Diaz-Cruz, E. S. Endocr. Rev. 2005, 26, 331.
3. Baum, M.; Buzdar, A.; Cuzick, J.; Forbes, J.; Houghton, J.; Howell, A.; Sahmoud,
T. Cancer 2003, 98, 1802.
Nimesulide
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
173.30 20.30
2.66 0.57
4. Mouridsen, H.; Gershanovich, M.; Sun, Y.; Perez-Carrion, R.; Boni, C.;
Monnier, A.; Apffelstaedt, J.; Smith, R.; Sleeboom, H. P.; Janicke, F.;
Pluzanska, A.; Dank, M.; Becquart, D.; Bapsy, P. P.; Salminen, E.; Snyder,
R.; Lassus, M.; Verbeek, J. A.; Staffler, B.; Chaudri-Ross, H. A.; Dugan, M. J.
Clin. Oncol. 2001, 19, 2596.
5. Coombes, R. C.; Hall, E.; Gibson, L. J.; Paridaens, R.; Jassem, J.; Delozier, T.; Jones,
S. E.; Alvarez, I.; Bertelli, G.; Ortmann, O.; Coates, A. S.; Bajetta, E.; Dodwell, D.;
Coleman, R. E.; Fallowfield, L. J.; Mickiewicz, E.; Andersen, J.; Lonning, P. E.;
Cocconi, G.; Stewart, A.; Stuart, N.; Snowdon, C. F.; Carpentieri, M.; Massimini,
G.; Bliss, J. M.; Van, d. New. Engl. J. Med. 2004, 350, 1081.
6. Smith, I. E.; Dowsett, M. New. Engl. J. Med. 2003, 348, 2431.
7. Johnston, S. R.; Dowsett, M. Nat. Rev. Cancer 2003, 3, 821.
8. Yue, W.; Wang, J. P.; Conaway, M. R.; Li, Y.; Santen, R. J. J. Steroid Biochem. Mol.
Biol. 2003, 86, 265.
9. Song, R. X.; Santen, R. J.; Kumar, R.; Adam, L.; Jeng, M. H.; Masamura, S.; Yue, W.
Mol. Cell Endocrinol. 2002, 193, 29.
10. Martin, L. A.; Farmer, I.; Johnston, S. R.; Ali, S.; Marshall, C.; Dowsett, M. J. Biol.
Chem. 2003, 278, 30458.
11. Jelovac, D.; Sabnis, G.; Long, B. J.; Macedo, L.; Goloubeva, O. G.; Brodie, A. M.
Cancer Res. 2005, 65, 5380.
12. Johnston, S. R.; Head, J.; Pancholi, S.; Detre, S.; Martin, L. A.; Smith, I. E.;
Dowsett, M. Clin. Cancer Res. 2003, 9, 524S.
13. Berstein, L. M.; Zheng, H.; Yue, W.; Wang, J. P.; Lykkesfeldt, A. E.; Naftolin, F.;
Harada, H.; Shanabrough, M.; Santen, R. J. Endocr. Relat. Cancer 2003, 10, 267.
14. Santen, R. J. Steroids 2003, 68, 559.
15. Masri, S.; Phung, S.; Wang, X.; Wu, X.; Yuan, Y. C.; Wagman, L.; Chen, S. Cancer
Res. 2008, 68, 4910.
16. Harris, R. E.; Chlebowski, R. T.; Jackson, R. D.; Frid, D. J.; Ascenseo, J. L.;
Anderson, G.; Loar, A.; Rodabough, R. J.; White, E.; McTiernan, A. Cancer Res.
2003, 63, 6096.
17. Nakatsugi, S.; Ohta, T.; Kawamori, T.; Mutoh, M.; Tanigawa, T.; Watanabe,
K.; Sugie, S.; Sugimura, T.; Wakabayashi, K. Jpn. J. Cancer Res. 2000, 91,
886.
18. Diaz-Cruz, E. S.; Shapiro, C. L.; Brueggemeier, R. W. J. Clin. Endocrinol. Metab.
2005, 90, 2563.
19. Su, B.; Diaz-Cruz, E. S.; Landini, S.; Brueggemeier, R. W. J. Med. Chem. 2006, 49,
1413.
20. Su, B.; Darby, M. V.; Brueggemeier, R. W. J. Comb. Chem. 2008, 10, 475.
21. Chen, B.; Su, B.; Chen, S. Biochem. Pharmacol. 2009, 77, 1787.
22. Su, B.; Hackett, J. C.; Diaz-Cruz, E. S.; Kim, Y. W.; Brueggemeier, R. W. Bioorg.
Med. Chem. 2005, 13, 6571.
23. Hackett, J. C.; Kim, Y. W.; Su, B.; Brueggemeier, R. W. Bioorg. Med. Chem. 2005,
13, 4063.
4.68 0.54
2.37 0.44
1.69 0.25
174.20 79.33
28.46 5.74
175.60 94.37
11.76 2.34
71.49 23.07
93.89 30.52
44.18 16.04
16.07 3.65
16.08 3.08
93.63 59.03
14.89 2.08
39.38 13.88
16.24 3.32
19.91 5.58
22.53 6.50
41.37 15.70
18.49 2.75
10.30 3.10
13.18 2.23
10.36 2.42
51.27 14.91
1.00 0.39
2.15 0.54
7.64 1.67
14.05 4.16
23.58 8.78
16.06 4.94
7.93 2.85
11.46 2.75
8.26 3.04
11.41 4.11
6.98 2.93
12.04 2.36
9.56 1.90
12.07 2.86
7.68 2.45
24. Compound 36: White powder, 1H NMR (500 MHz, DMSO-d6) d 10.51 (1H, s),
9.08 (1H, s), 8.74 (1H, s), 8.27 (1H, d, J = 8.0 Hz), 7.72 (1H, s), 7.55 (1H, d,
J = 8.0 Hz), 7.37 (5H, m), 5.07 (2H, s), 3.08 (3H, s), 2.83 (3H, s), 2.28 (3H, s), 2.24
(3H, s); HRMS calculated for C23H26N3O4S (M+H)+ 440.1639, found 440.1638.
Compound 58: White powder, 1H NMR (500 MHz, DMSO-d6) d 9.91 (1H, s), 7.71
(1H, d, J = 2.5 Hz), 7.56 (2H, m), 7.47 (1H, m), 7.22 (2H, m), 5.13 (2H, s), 3.07
(3H, s), 2.86 (3H, s), 2.27 (1H, m), 1.76 (4H, m) 1.62 (1H, m), 1.37 (2H, m), 1.24
(3H, m); HRMS calculated for C22H27Cl2N2O4S (M+H)+ 485.1063, found
LTEDaro cells were treated with indicated compounds at various concentrations by
triplicates for 72 h and cell viability was measured by MTT assay.25
the biological activity, even though compound 36 is slightly more
potent than compounds 33 and 34.
In brief, we optimized nimesulide structure and developed sev-
eral more potent analogs, such as compounds 36, 58, and 59, which
485.1061. Compound 59: White powder, 1H NMR (500 MHz, DMSO-d6)
d
inhibit LTEDaro cell growth with IC50 of 1.69 0.25
1.00 0.39 M, and 2.15 0.54 M, respectively. Compared with
nimesulide with IC50 of 173.30 20.30 M, the new derivatives
lM,
10.34 (1H, s), 7.93 (2H, d, J = 1.0 Hz), 7.92 (2H, m), 7.59 (6H, m), 7.30 (1H, d,
J = 8.5 Hz), 5.18 (2H, s), 3.11 (3H, s), 2.89 (3H, s); HRMS calculated for
C22H20Cl2N2NaO4S (M+Na)+ 501.0413, found 501.0410.
l
l
l
25. The effect of nimesulides derivatives on LTEDaro breast cancer cell viability
was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide assay (MTT) in triplicates. Cells were grown in custom
medium in 96-well, flat-bottomed plates for 24 h, and were exposed to various
concentrations of nimesulide derivatives dissolved in DMSO (final
concentration 6 0.1%) in media for 72 h. Controls received DMSO vehicle at a
concentration equal to that in drug-treated cells. The medium was removed,
have much more potent pharmacological activity against LTEDaro
breast cancer cell growth. Structure–activity relationship study
suggests that A position needs 2,5-dimethyl or dichloro benzyl
group to increase the biological activity. The exact biological mech-
anism of the compound is still under investigation in our
laboratory.
replaced by 200 ll of 0.5 mg/ml of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide in fresh media, and cells were incubated in the CO2
incubator at 37 °C for 2 h. Supernatants were removed from the wells, and the
reduced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
Acknowledgment
dye was solubilized in 200
determined on a plate reader.
ll/well DMSO. Absorbance at 570 nm was
This work was supported by grants from the National Institutes
of Health CA44735 (S.C.), ES08528 (S.C.).