Table 2 Tm-values of matched and mismatched triplexes in the
presence of Mg2+-ionsa
Idaho Research Office and Research Council Seed Grant, and
National Institutes of Health [grant number P20 RR016448
from the COBRE Program of the National Center for
Research Resources]. MEØ acknowledges a scholarship from
the College of Graduate Studies. We thank the EBI Murdock
Mass Spectrometry center for mass spectrometric analyses.
Tm[DTm]/1C
A : T (match)
T : A
C : G
G : C
ON
T1
V1
X1
Y1
37.0
49.0
51.5
50.0
10.0 [ꢁ27.0]
10.0 [ꢁ39.0]
10.0 [ꢁ41.5]
10.0 [ꢁ40.0]
19.5 [ꢁ17.5]
28.5 [ꢁ20.5]
24.5 [ꢁ27.0]
26.5 [ꢁ23.5]
13.5 [ꢁ23.5]
24.0 [ꢁ25.0]
27.5 [ꢁ24.0]
27.5 [ꢁ22.5]
Notes and references
z O4-Triazolyl-dT-CE phosphoramidites12 were incorporated into
TFOs, and converted to 5-methyldeoxycytidine monomers during
deprotection (32% aq. NH3).
y Triplex formation was complete within B1 h in the presence of
10 mM Mg2+, while requiring overnight incubation in absence of
Mg2+. Triplex stabilities increased by 8–10 1C (Tm-data Tables 1 and 2).
a
Tm-values (DTm = change in Tm-value relative to matched triplex).
Conditions and TFO-sequences (B1-series) as described in Table 1
except for addition of 10 mM MgCl2. dsDNA targets = 50-GCT AAA
AAG AMA GAG AGA TCG-30 : 30-CGA TTT TTC TM0T CTC
ꢁ
ꢁ
TCT ACG-50, where M : M0 = A : T, T : A, C : G and G : C,
ꢁ
ꢁ
respectively.
1 M. Duca, P. Vekhoff, K. Oussedik, L. Halby and P. B. Arimondo,
Nucleic Acids Res., 2008, 36, 5123.
2 F. A. Rogers, J. A. Lloyd and P. M. Glazer, Curr. Med. Chem.:
Anti-Cancer Agents, 2005, 5, 319.
3 I. Ghosh, C. I. Stains, A. T. Ooi and D. J. Segal, Mol. BioSyst.,
2006, 2, 551.
4 (a) P. J. Hrdlicka, T. S. Kumar and J. Wengel, Chem. Commun.,
2005, 4279; (b) R. Ge, J. E. Heinonen, M. G. Svahn,
A. J. Mohamed, K. E. Lundin and C. I E. Smith, FASEB J.,
2007, 21, 1902; (c) R. Beane, S. Gabillet, C. Montaillier, K. Arar and
D. R. Corey, Biochemistry, 2008, 47, 13147; (d) T. Ishizuka,
J. Yoshida, Y. Yamamoto, J. Sumaoka, T. Tedeschi,
R. Corradini, S. Sforza and M. Komiyama, Nucleic Acids Res.,
2008, 36, 1464; (e) P. Simon, F. Cannata, J.-P. Concordet and
C. Giovannangeli, Biochimie, 2008, 90, 1109.
5 (a) J. L. Asensio, R. Carr, T. Brown and A. N. Lane, J. Am. Chem.
Soc., 1999, 121, 11063; (b) M. R. Alam, A. Majumdar, A. K.
Thazhathveetil, S. T. Liu, J. L. Liu, N. Puri, B. Cuenoud, S. Sasaki,
P. S. Miller and M. M. Seidman, Biochemistry, 2007, 46, 10222.
6 (a) H. Torigoe, Y. Hari, M. Sekiguchi, S. Obika and T. Imanishi,
J. Biol. Chem., 2001, 276, 2354; (b) S. Obika, Chem. Pharm. Bull.,
2004, 52, 1399; (c) B.-W. Sun, B. R. Babu, M. D. Sørensen,
K. Zakrzewska, J. Wengel and J.-S. Sun, Biochemistry, 2004, 43,
4160; (d) E. Brunet, P. Alberti, L. Perrouault, R. Babu, J. Wengel
and C. Giovannangeli, J. Biol. Chem., 2005, 280, 20076.
7 (a) M. Koizumi, K. Morita, M. Daigo, S. Tsutsumi, K. Abe,
S. Obika and T. Imanishi, Nucleic Acids Res., 2003, 31, 3267;
(b) N. Kumar, K. E. Nielsen, S. Maiti and M. J. Petersen, J. Am.
Chem. Soc., 2006, 128, 14; (c) T. Højland, S. Kumar, B. R. Babu,
T. Umemoto, N. Albaek, P. K. Sharma, P. Nielsen and J. Wengel,
Org. Biomol. Chem., 2007, 5, 2375; (d) S. M. A. Rahman, S. Seki,
S. Obika, S. Haitani, K. Miyashita and T. Imanishi, Angew. Chem.,
Int. Ed., 2007, 46, 4306; (e) S. M. A. Rahman, S. Seki, S. Obika,
H. Yoshikawa, K. Miyashita and T. Imanishi, J. Am. Chem. Soc.,
2008, 130, 4886.
8 (a) L. Lacroix, J. Lacoste, J. F. Reddoch, J. L. Mergny,
D. D. Levy, M. M. Seidman, M. D. Matteucci and
P. M. Glazer, Biochemistry, 1999, 38, 1893; (b) J. Bijapur,
M. D. Keppler, S. Bergqvist, T. Brown and K. R. Fox, Nucleic
Acids Res., 1999, 27, 1802; (c) J. A. Brazier, T. Shibata,
J. Townsley, B. F. Taylor, E. Frary, N. H. Williams and
D. M. Williams, Nucleic Acids Res., 2005, 33, 1362.
9 (a) M. Sollogoub, R. A. J. Darby, B. Cuenoud, T. Brown and
K. R. Fox, Biochemistry, 2002, 41, 7224; (b) H. Li, P. S. Miller and
M. M. Seidman, Org. Biomol. Chem., 2008, 6, 4212.
Fig. 3 Exonuclease (SVPDE) degradation of singly modified C5-
functionalized LNA and reference TFOs. Nuclease degradation studies
performed in Tris-buffer (50 mM Tris-HCl, 10 mM MgCl2, pH 9.0) at
37 1C using 2 mM of TFO strands and 0.43 mg of SVPDE (snake venom
phosphordiesterase). For sequences of T1–V1–X1–Y1, see Table 1.
TFOs T1 and V1, while discrimination of GC-mismatches is
largely unaffected (Table 2).
Consequentially, the most demanding mismatched dsDNA
targets are more efficiently discriminated by C5-functionalized
LNA TFOs (DTm = ꢁ24.0 1C and ꢁ22.5 1C for X1 and Y1,
respectively) than by reference TFOs (DTm = ꢁ17.5 1C and
ꢁ20.5 1C, for T1 and V1, respectively). This data demonstrates
that C5-alkynyl functionalized LNAs exhibit increased
thermal affinity and specificity relative to parent LNAs.
Finally, the resistance of singly modified C5-alkynyl
functionalized LNA TFOs (B1-series) against degradation by
the 30-exonuclease snake venom phosphodiesterase (SVPDE)
was evaluated, by following the increase in absorbance
(hyperchromicity) at 260 nm15 of TFOs in the presence of
SVPDE (Fig. 3). As expected, DNA TFO T1 is rapidly
degraded (485% cleavage after 1 h) whereas singly modified
LNA V1 confers some protection against SVPDE-mediated
degradation (B70% cleavage after 1 h). C5-Ethynyl and, in
particular, C5-propargylamine functionalized LNA TFOs are
considerably more resistant against nucleolytic degradation
(X1 B60%, Y1 B35% after 1 h). This suggests that the C5-
substituents act as a steric shield, to ensure greater biostability.
To conclude, C5-alkynyl functionalized LNAs exhibit
unsurpassed TFO-hybridization properties, which are likely
to enable efficient DNA-targeting under physiological
conditions. Studies along these lines are ongoing.
10 M. E. Østergaard, P. Kumar, B. Baral, D. J. Raible, T. S. Kumar,
B. A. Anderson, D. C. Guenther, L. Deobald, A. J. Paszczynski,
P. K. Sharma and P. J. Hrdlicka, ChemBioChem, DOI: 10.1002/
cbic.200900500.
11 J. S. Lee, M. L. Woodsworth, L. J. Latimer and A. R. Morgan,
Nucleic Acids Res., 1984, 12, 6603.
12 S. A. Ivanov, E. M. Volkov, T. S. Oretskaya and S. Muller,
Tetrahedron, 2004, 60, 9273.
13 L. E. Xodo, Eur. J. Biochem., 1995, 228, 918.
14 N. Sugimoto, P. Wu, H. Hara and Y. Kawamoto, Biochemistry,
2001, 40, 9396.
We appreciate financial support from Idaho NSF EPSCoR,
the BANTech Center at the Univ. of Idaho, a University of
15 P. N. Jørgensen, P. C. Stein and J. Wengel, J. Am. Chem. Soc.,
1994, 116, 2231.
ꢀc
This journal is The Royal Society of Chemistry 2009
6758 | Chem. Commun., 2009, 6756–6758