Table 1 Photophysical and thermal properties of compounds 2c and 4a–4g
Q.Y.a,c
(%)
HOMO/LUMOd
(eV)
Band gape
(eV)
Td
(1C)
a
a,b
f
Absmax
(nm)
PLmax
(nm)
Compound
2c
4a
4b
4c
4d
4e
4f
311
318
319
335
330
296, 338
302, 346
305, 351
419, 444
449, 474
454
481, 513
511, 454
543
19.1
78.2
56.3
80.3
82.5
60.4
36.7
3.4
5.55/2.63
5.36/2.62
5.44/2.71
5.50/2.97
5.37/2.99
5.20/2.83
5.20/2.96
4.95/2.83
2.92
2.74
2.73
2.53
2.38
2.37
2.24
2.12
524
439
485
472
510
448
447
451
573
611
4g
a
f
b
c
In CH2Cl2, 1 ꢂ 10ꢁ5 M. Excitation wavelengths are shown in ESI. Coumarin 1 as a standard. The energy levels of HOMO are determined
d
from CV. Band gaps were calculated from uv absorption. Determined from TGA.
e
4 A. S. Ionkin, W. J. Marshall, B. M. Fish, L. M. Bryman and
Y. Wang, Chem. Commun., 2008, 2319.
5 To the best of our knowledge, functionalization of other PAHs
are only known for hexabenzocoronenen, triphenylenes and
dibenzochrysenes, but the change of energy gaps are rather small
(o0.3 eV); see ref. 6.
6 (a) Y. Kikuzawa, T. Mori and H. Takeuchi, Org. Lett., 2007, 9,
4817; (b) M. Weck, A. R. Dunn, K. Matsumoto, G. W. Coates,
E. B. Lobkovsky and R. H. Grubbs, Angew. Chem., Int. Ed., 1999,
38, 2741; (c) R. Chaudhuri, M. Y. Hsu, C. W. Li, C. I. Wang,
C. J. Chen, C. K. Lai, L. Y. Chen, S. H. Liu, C. C. Wu and
R. S. Liu, Org. Lett., 2008, 10, 3053.
7 (a) J. Wu, W. Pisula and K. Mullen, Chem. Rev., 2007, 107, 718;
(b) S. Sergeyev, W. Pisula and Y. H. Geerts, Chem. Soc. Rev., 2007,
36, 1902; (c) S. Laschat, A. Baro, Nelli. Steinke, F. Giesselmann,
C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer,
¨
A. Schreivogel and M. Tosoni, Angew. Chem., Int. Ed., 2007, 46,
4832.
Scheme 3 Structure of TCTA, BCP, TPBI, DMPPP.
8 (a) M. Bendikov, F. Wudl, Perepichka and D. F. Perepichka,
Chem. Rev., 2004, 104, 4891; (b) J. E. Anthony, Chem. Rev., 2006,
106, 5028.
9 E. A. Silinsh, Organic Molecular Crystals: Their Electronic States,
Springer-Verlag, Berlin, 1980.
10 N. Asao, T. Nogami, S. Lee and Y. Yamamoto, J. Am. Chem.
Soc., 2003, 125, 10921.
11 (a) D. Bailey and V. E. Williams, Chem. Commun., 2005, 2569;
(b) D. Bailey and V. E. Williams, Tetrahedron Lett., 2004, 45, 2511.
12 Crystallographic data of compounds 2c (CCDC 735891), 4c
(CCDC 735892) and 4d (CCDC 735893) can be obtained free of
charge from the Cambridge Crystallographic Data Center via
ESIw.
13 (a) D. Zehm, W. Fudickar and T. Linker, Angew. Chem., Int. Ed.,
2007, 46, 7689; (b) N. Miyaura and A. Suzuki, Chem. Rev., 1995,
95, 2457.
14 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467; (b) K. Sonogashira, in Handbook of Organopalladium
Chemistry for Organic Synthesis, ed. E. Negishi and A. Meijere,
Wiley-VCH, New York, 2002; (c) E. Negishi and L. Anastasia,
Chem. Rev., 2003, 103, 1979.
15 (a) C. Lambert, C. Risko, V. Coropceanu, J. Schelter, S. Amthor,
N. E. Gruhn, J. C. Durivage and J. L. Bre0das, J. Am. Chem. Soc.,
2005, 127, 8508; (b) J. Hartwig, Palladium-Catalyzed Amination
of Aryl Halides and Related Reactions, in Handbook of
Organopalladium Chemistry for Organic Synthesis, ed. E. Negishi,
Wiley, New York, 2002, 1051.
Fig. 3 EL spectra of the device using compound 4a as dopant at
various voltage.
Notes and references
1 C. H. Chien, C. K. Chen, F. M. Hsu, C. F. Shu, P. T. Chou and
C. H. Lai, Adv. Funct. Mater., 2009, 19, 560–566.
2 (a) K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu,
M. J. Huang, J. J. Lin, I. C. Chen and C. H. Cheng, Adv. Funct.
Mater., 2008, 18, 67; (b) C. H. Cheng, H. T. Shih and K. C. Wu,
US Patent 6861163, 2005; (c) S. Tao, Z. Peng, X. Zhang, P. Wang,
C. S. Lee and S. T. Lee, Adv. Funct. Mater., 2005, 15, 1716;
(d) C. Tang, F. Liu, Y. J. Xia, L. H. Xie, A. Wei, S. B. Li,
Q. L. Fan and W. J. Huang, J. Mater. Chem., 2006, 16, 4074;
(e) J. A. Mikroyannidis, L. Fenenko and C. Adachi, J. Phys. Chem.
B, 2006, 110, 20317; (f) M. Y. Lo, C. Zhen, M. Lauters,
G. E. Jabbour and A. Sellinger, J. Am. Chem. Soc., 2007, 129,
5808.
16 (a) T. J. Meyer, Pure Appl. Chem., 1986, 58, 1193; (b) J. V. Caspar
and T. J. Meyer, J. Phys. Chem., 1983, 87, 952.
17 The charge transfer is much more pronounced for species 4g than
4e and 4f. The emission maxima of 4e, 4f and 4g in hexane were
511, 534 and 556 nm, respectively. Compared to those in CH2Cl2,
we observed the magnitude of red-shifts, 32, 39 and 55 nm for 4e,
4f and 4g, respectively. We can not exclude the possibility of an
adverse effect of the charge transfer on the poor quantum yield
of 4g.
3 (a) B. X. Mi, Z. Q. Gao, C. S. Lee and S. T. Lee, Appl. Phys. Lett.,
1999, 75, 4055; (b) C. Kufazvinei, M. Ruether, J. Wang and
W. Blau, Org. Electron., 2009, 10, 674–680.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6961–6963 | 6963