G. A. Kraus, V. Gupta / Tetrahedron Letters 50 (2009) 7180–7183
7183
OMe
MeO
OMe
Br
OMe
MeO
OMe
O
MeO
OMe
OH
n-BuLi, THF
-78 oC - 0 ºC
CHO
MnO2, Benzene
Dean- Stark
OMe
OMe
MeO
OMe
OMe
5
7
6
OMe
OMe
1.0M BBr3,
CH2Cl2
-78 ºC - -50 ºC
MeO
OMe
OMe
RO
O
MeO
OH
O
MeO
O
O
OR
P4-t-Bu,
Benzene,
170 ºC,
OMe
OMe
NaH, DMF
MeO
OR
Br
Sealed Tube
RO
OR
8
OMe
9
OMe
10
R = Me
1.0M BBr3,
CH2Cl2, 0 ºC - RT
1 R = H
Scheme 3. Synthesis of 1.
Zhuanli Shenqing Gongkai Shuomingshu Application: CN 2006-10076299
20060421.
This methodology can be used in a direct total synthesis of amu-
rensin H 1 (Scheme 3). Starting from stilbene 5 (readily available
from 3,5-dimethoxybenzaldehyde),14 metal–halogen exchange fol-
lowed by reaction with 3,5-dimethoxybenzaldehyde gave 6 and
oxidation of 6 with activated manganese dioxide affords a benzo-
phenone 7 in 77% yield from 5. This benzophenone 7 can be selec-
tively demethylated in 88% yield to give 8 using BBr3 solution
(1.0 M in CH2Cl2) at ꢀ50 °C. The resulting phenol 8 is converted
into benzyl ether 9 in 86% yield.
Cyclization of 9 using P4-t-Bu in dry benzene at 170 °C (sealed
tube conditions) provided 10 in 42% yield. The higher temperature
needed to effect the cyclization is likely a result of steric factors. Fi-
nally, the total synthesis of amurensin H 1 was achieved by
exhaustive demethylation of benzofuran 10 using solution (1.0 M
in CH2Cl2) at room temperature in 67% yield. The analytical data
for 1 matched with the previously reported data.3,15
3. Huang, K.-S.; Lin, M.; Wang, Y.-H. Chin. Chem. Lett. 1999, 10, 817–820.
4. Huang, K.-S.; Wang, Y.-H.; Li, R.-L.; Lin, M. J. Nat. Prod. 2000, 63, 86–89.
5. Huang, K.-S.; Wang, Y.-H.; Li, R.-L.; Lin, M. Phytochemistry 2000, 8, 875–881.
6. Bobrowska-Hagerstrand, M.; Lillas, M.; Mrowczynska, L.; Wrobel, A.;
Shirataki, Y.; Motohashi, N.; Hagerstrand, H. Anticancer Res. 2006, 3A,
2081–2084.
7. Hou, X.-L.; Yang, Z.; Yeung, K.-S.; Wong, H. N. C. Prog. Heterocycl. Chem. 2008,
19, 176–207; Cacchi, S.; Fabrizi, G.; Goggiamani, A. Curr. Org. Chem. 2006,
10(12), 1423–1455.
8. Cho, C.-H.; Neuenswander, B.; Lushington, G. H.; Larock, R. C. J. Comb. Chem.
2008, 6, 941–947.
9. Bernini, R.; Cacchi, S.; De Salve, I.; Fabrizi, G. Synthesis 2007, 873–882; Pan, C.;
Yu, J.; Zhou, Y.; Wang, Z.; Zhou, M.-M. Synlett 2006, 1657–1662; Colobert, F.;
Castanet, A.-S.; Abillard, O. Eur. J. Org. Chem. 2005, 3334–3341.
10. Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449–1451.
11. Abdul-Aziz, M.; Auping, J. V.; Meador, M. A. J. Org. Chem. 1995, 60, 1303–1308;
Lappin, G. R.; Zannucci, J. S. J. Chem. Soc. D: Chem. Commun. 1969, 1113.
12. Kraus, G. A.; Zhang, N.; Hoover, K. Tetrahedron Lett. 2002, 43, 5319.
13. Representative procedure for the preparation of 2,3-diarylbenzofuran: To
a
solution of 2-benzyloxybenzophenone (0.20 g, 0.69 mmol) in freshly distilled
dry benzene (10 mL), P4-t-Bu solution (0.77 mL, 0.76 mmol) was added at rt
and the reaction mixture was heated to reflux. After the completion of reaction
(3 h), benzene was partially evaporated and reaction mixture was purified by
column chromatography using 10% ethyl acetate: petroleum ether to obtain
pure product (100% yield).2,3-Diphenylbenzo[b]furan (4): Mp 123–124.5 °C;
1HNMR (400 MHz) d 7.23 (t, J = 7.3 Hz, 1H), 7.28–7.35 (m, 4H), 7.38–7.52 (m,
6H), 7.55 (d, J = 8.3 Hz, 1H), 7.65–7.67 (m, 2H); 13CNMR (100 MHz) d 111.1,
117.5, 120.0, 122.9, 124.7, 127.0, 127.6, 128.3, 128.4, 129.0, 129.8, 130.2, 130.7,
132.8, 150.5, 154.0; MS m/z 270 (M+).
Acknowledgment
We thank the Department of Chemistry at Iowa State University
for partial support of this research.
References and notes
14. Snyder, S. A.; Zografos, A. L.; Lin, Y. Angew. Chem., Int. Ed. 2007, 43, 8186–
8191.
15. Ito, J.; Takaya, Y.; Oshima, Y.; Niwa, M. Tetrahedron 1999, 55, 2529–2544.
1. Cheng, K.-W.; Wang, M.; Chen, F.; Ho, C.-T. ACS Symp. Ser. 2008, 987, 36–58.
2. Li, Y.; Yao, C.; Bai, J.; Lin, M.; Cheng, G. Acta Pharmacol. Sinica 2006, 27(6), 735–
740; Li, Y.; Cheng, G.; Lin, M.; Yao, C.; Huang, K.; Liu, B.; Bai, J.; Li, N. Faming