K. J. Quinn et al. / Tetrahedron Letters 50 (2009) 7121–7123
8. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
7123
Acknowledgments
9. Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360.
Financial support of this research by the National Science Foun-
dation (CHE-0848128) and the Pfizer Undergraduate Research Fel-
lowship Program is gratefully acknowledged. Mass spectral data
were obtained at the University of Massachusetts Mass Spectrom-
etry Facility, which is supported, in part, by the National Science
Foundation.
10. Virolleaud, M. A.; Bressy, C.; Piva, O. Tetrahedron Lett. 2003, 44, 8081.
11. Virolleaud, M. A.; Piva, O. Synlett 2004, 2087.
12. For
a review of the non-metathetic reactivity of Ru carbene complexes
including olefin isomerization, see: Alcaide, B.; Almendros, P.; Luna, A. Chem.
Rev. 2009, 109, 3817.
13. Formentin, P.; Gimeno, N.; Steinke, J. H. G.; Vilar, R. J. Org. Chem. 2005, 70, 8235.
14. Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168.
15. Quinn, K. J.; Curto, J. M.; Faherty, E. E.; Cammarano, C. M. Tetrahedron Lett.
2008, 49, 5238.
References and notes
16. RCM//CM of 4 and 1-decene. To a solution of triene 4 (202.0 mg, 0.74 mmol) in
CH2Cl2 (74 mL) was added second-generation Hoveyda–Grubbs’ catalyst
(46.3 mg, 0.074 mmol). The reaction mixture was heated to reflux for 1 h, at
which time TLC analysis indicated that RCM was complete. 1-Decene (0.70 mL,
3.70 mmol) was added by syringe, and heating was continued for an additional
21 h. After cooling to room temperature, the brown solution was filtered
through a short pad of silica gel, and the filtrate was concentrated in vacuo.
Purification by silica gel chromatography (4:1 hexanes/Et2O) gave RCM/CM
1. (a) Laurence, B. R.; Pickett, J. A. J. Chem. Soc., Chem. Commun. 1982, 59; (b)
Laurence, B. R.; Mori, K.; Otsuka, T.; Pickett, J. A.; Wadhams, L. J. J. Chem. Ecol.
1985, 11, 643.
2. Anderson, J. F.; Andeadis, T. G.; Vossbrinck, C. R.; Tirrell, S.; Waken, E. M.;
French, R. A.; Garmendia, A. E.; Van Kruiningen, H. J. Science 1999, 286, 2331.
3. For recent syntheses and leading references, see: (a) Singh, S.; Guiry, P. J. Eur. J.
Org. Chem. 2009, 1896; (b) Prasad, K. R.; Anbarsan, P. Tetrahedron: Asymmetry
2007, 18, 2479; (c) Sabitha, G.; Swapna, R.; Reddy, E. V.; Yadav, J. S. Synthesis
2006, 4242; (d) Ikishima, H.; Sekiguchi, Y.; Ichikawa, Y.; Kotsuki, H. Tetrahedron
2006, 62, 311; (e) Dhotare, B.; Goswami, D.; Chattopadhyay, A. Tetrahedron Lett.
2005, 46, 6219; (f) Sun, B.; Peng, L.; Chen, X.; Li, Y.; Yamasaki, K. Tetrahedron:
Asymmetry 2005, 16, 1305.
4. (a) Quinn, K. J.; Smith, A. G.; Cammarano, C. M. Tetrahedron 2007, 63, 4881; (b)
Quinn, K. J.; Isaacs, A. K.; DeChristopher, B. A.; Szklarz, S. C.; Arvary, R. A. Org. Lett.
2005, 7, 1243; (c) Quinn, K. J.; Isaacs, A. K.; Arvary, R. A. Org. Lett. 2004, 6, 4143.
5. Prepared in gram quantities and high enantiopurity (>98% ee) from
commercially available divinyl carbinol via modified Sharpless asymmetric
epoxidation using cumene hydroperoxide instead of t-butylhydroperoxide, see:
Romero, A.; Wong, C. H. J. Org. Chem. 2000, 65, 8264.
product 2 (203.1 mg, 77%) as a yellow oil. Data for 2: ½a D22
ꢂ
+70.1 (c 1.55, CHCl3);
1H NMR (CDCl3, 400 MHz) d 7.37–7.24 (m, 5H), 5.95–5.87 (m, 2H); 5.81 (dt,
J = 15.5, 6.8 Hz, 1H), 5.33 (ddt, J = 15.5, 8.1, 1.5 Hz, 1H), 4.90 (m, 1H), 4.57 (d,
J = 11.6 Hz, 1H), 4.37 (d, J = 11.6 Hz, 1H), 4.09 (dd, J = 8.1, 3.4 Hz, 1H), 3.12–2.96
(m, 2H), 2.09 (q, J = 6.8 Hz, 2H), 1.45–1.22 (m, 12H), 0.88 (t, J = 6.9, 3H);13C
NMR (CDCl3, 100 MHz) d 169.8, 137.9, 137.8, 128.4, 127.8, 127.7, 124.6, 124.0,
121.9, 82.0, 81.6, 70.7, 32.3, 31.9, 30.8, 29.4, 29.3, 29.1, 29.0, 22.6, 14.1; HRMS
calcd for C23H33O3 (MH+) 357.2430, found 357.2434.
17. Data for (ꢀ)-6-acetoxy-5-hexadecanolide (1): ½a D22
ꢂ
ꢀ36.1 (c 0.85, CHCl3); lit.3a
½
a 2D0
ꢂ
ꢀ35.4 (c 0.85, CHCl3); 1H NMR (CDCl3, 400 MHz) d 4.98 (dt, J = 7.8, 5.0 Hz,
1H), 4.35 (ddd, J = 11.0, 4.8, 3.4 Hz, 1H), 2.60 (m, 1H), 2.46 (m, 1H), 2.08 (s, 3H),
2.02–1.76 (m, 2H), 1.73–1.52 (m, 4H), 1.48–1.20 (m, 16H), 0.88 (t, J = 6.8 Hz,
3H); 13C NMR (CDCl3, 100 MHz) d 170.8, 170.5, 80.5, 74.3, 31.9, 29.5, 29.4, 29.3,
25.2, 23.5, 22.7, 21.0, 18.3, 14.1; HRMS calcd for C18H33O4 (MH+) 313.2379,
found 313.2375.
6. Yields cited in the schemes are for chromatographically and spectroscopically
homogeneous substances. All structural assignments are supported by 1H and
13C NMR and high-resolution mass spectrometric analyses.
7. Alcaraz, L.; Harnett, J. J.; Mioskowski, C.; Martel, J. P.; Le Gall, T.; Shin, D. S.;
Falck, J. R. Tetrahedron Lett. 1994, 35, 5449.