Y. Cui et al. / Journal of Molecular Structure 938 (2009) 322–327
327
Ed. 45 (2006) 6693;
(d) J.-M. Fang, S. Selvi, J.-H. Liao, Z. Slanina, C.-T. Chen, P.T. Chou, J. Am. Chem.
Soc. 126 (2004) 3559.
thesized and their crystal structures were characterized by X-ray
crystallography. In the three crystals, the pyrrole-2-carboxylate
moieties involve into two kinds of synthons, R22(10) type dimer
and C(5) type catemer. DFT calculation rationalized that the cate-
mer synthon is energy more stable but is geometry disadvantaged.
Most importantly, a phenomenon of synthon conversion of pyr-
role-2-carboxylate, from dimer to catemer, was found with the ste-
ric hindrance increasing of the substituted groups and which
caused distinct assemblies of 2–4. This observation would be help-
ful to obtain desired supramolecular structures by purposefully
controlling the molecular structure of pyrrole-2-carboxylate com-
pounds and demonstrated that the pyrrole-2-carboxylate has good
perspective on application to crystal engineering.
[4] (a) J.L. Sessler, S. Camiolo, P.A. Gale, Coord. Chem. Rev. 240 (2003) 17;
(b) D.-W. Yoon, D.E. Gross, V.M. Lynch, J.L. Sessler, B.P. Hay, C.-H. Lee, Angew.
Chem. Int. Ed. 47 (2008) 5038;
(c) G. Cafeo, F.H. Kohnke, A.J.P. White, D. Garozzo, A. Messina, Chem. Eur. J. 13
(2007) 649;
(d) S.J. Coles, P.A. Gale, M.B. Hursthouse, CrystEngComm. 3 (2001) 259;
(e) Z. Yin, Y. Zhang, J. He, J.-P. Cheng, Tetrahedron 62 (2006) 765;
(f) Z. Yin, Z. Li, A. Yu, J. He, J.-P. Cheng, Tetrahedron Lett. 45 (2004) 6803.
[5] (a) J.L. Sessler, G. Berthon-Gelloz, P.A. Gale, S. Camiolo, E.V. Anslyn Jr., P.
Anzenbacher, H. Furuta, G.J. Kirkovits, V.M. Lynch, H. Maeda, P. Morosini, M.
Scherer, J. Shriver, R.S. Zimmerman, Polyhedron 22 (2003) 2963;
(b) H. Maeda, Eur. J. Org. Chem. (2007) 5313.
[6] J.L. Sessler, M. Moini, M. Scherer, A. Gebauer, V. Lynch, Chem. Eur. J. 4 (1998)
152.
[7] H. Maeda, Y. Kusunose, M. Terasaki, Y. Ito, C. Fujimoto, R. Fujii, T. Nakanishi,
Chem. Asian J. 2 (2007) 350.
Acknowledgements
[8] Z. Yin, Z. Li, Tetrahedron Lett. 47 (2006) 7875.
[9] J.W. Harbuck, H. Rapoport, J. Org. Chem. 23 (1972) 3618.
[10] Bruker AXS, SHELXTL, Version 5.1, Bruker AXS, Madison, WI, USA, 1998.
[11] G.M. Sheldrick, SHELX 97, Program for X-ray Crystal Structure Solution and
Refinement, Göttingen University, Germany, 1997.
We are indebted to Professor Jin-Pei Cheng, Department of
Chemistry, Nankai University, for calculation. We sincerely thank
the financial supports from the Natural Science Foundation of Chi-
na (NSFC No. 20702038) and Major State Basic Research Develop-
ment Program of China (Grant No. G2007CB808005).
[12] Gaussian 98 (Revision A.9), M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E.
Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K.
Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.
Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson,
W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople,
Gaussian, Inc., Pittsburgh, PA, 1998.
Reference
[1] (a) G.D. Pantos, P. Pengo, J.K.M. Sanders, Angew. Chem. Int. Ed. 46 (2007) 194;
(b) X.-L. Zhang, C.-P. Guo, Q.-Y. Yang, W. Wang, W.-S. Liu, B.-S. Kang, C.-Y. Su,
Chem. Commun. (2007) 4242;
(c) H. Zhou, H. Dang, J.-H. Yi, A. Nanci, A. Rochefort, J.D. Wuest, J. Am. Chem.
Soc. 129 (2007) 13774;
(d) S.A. Dalrymple, G.K.H. Shimizu, J. Am. Chem. Soc. 129 (2007) 12114;
(e) B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629;
(e) V.R. Thalladi, A.K. Katz, H.L. Carrell, A. Nangia, G.R. Desiraju, Chem.
Commun. (1997) 1841.
[13] (a) K.N. Houk, S. Menzer, S.P. Newton, F.M. Raymo, J.F. Stoddart, D.J. Williams, J.
Am. Chem. Soc. 121 (1999) 1479;
(b) Z. Yin, Z. Li, J. Mol. Struct. 794 (2006) 265.
[14] M.C. Etter, Acc. Chem. Res. 23 (1990) 120.
[15] M.O. Senge, K.M. Smith, Acta Cryst. C61 (2005) o537.
[16] T. Beyer, S.L. Price, J. Phys. Chem. B 104 (2000) 2647.
[17] L. Infantes, S. Motherwell, Struct. Chem. 15 (2004) 173.
[18] C. Foces-Foces, I. Alkorta, J. Elguero, Acta Cryst. B56 (2000) 1018.
[19] D. Das, R.K.R. Jetti, R. Boese, G.R. Desiraju, Cryst. Growth Des. 3 (2003) 675;
D. Das, G.R. Desiraju, CrystEngComm. 8 (2006) 674.
[20] A.L. Spek, PLATON. A Multipurpose Crystallographic Tool, Utrecht University,
The Netherlands, 2002.
[21] ‘‘Whenever molecules form a crystal, they struggle to pack as closely as their
shapes and functional complements permit.” A.I. Kitaigorodskii, Molecular
crystals and Molecules, Academic Press, New York, 1973.
[2] (a) H.I. Suss, A. Neels, J. Julliger, CrystEngComm. 7 (2005) 370;
(b) W. Niu, B. Rambo, M.D. Smith, J.J. lavigne, Chem. Commun. (2005) 5166;
(c) F.C. Pigge, V.R. Vangala, D.C. Swenson, Chem. Commun. (2006) 2123;
(d) B. Venkataramanan, M.-A. Saifudin, J.V. Jagadese, V. Suresh, CrystEngComm.
6 (2004) 284.
[3] (a) C. Nativi, M. Cacciarini, O. Francesconi, A. Vacca, G. Moneti, A. Lenco, S.
Roelens, J. Am. Chem. Soc. 129 (2007) 4377;
(b) C. Nativi, M. Cacciarini, O. Francesconi, G. Moneti, S. Roelens, Org. Lett. 9
(2007) 4685;
(c) O. Francesconi, A. Ienco, G. Moneti, C. Nativi, S. Roelens, Angew. Chem. Int.