7248
M. Adib et al. / Tetrahedron Letters 50 (2009) 7246–7248
2007, 63, 11135–11140; Adib, M.; Aali Koloogani, S.; Abbasi, A.; Bijanzadeh, H.
R. Synthesis 2007, 3056–3060; Adib, M.; Sheibani, E.; Abbasi, A.; Bijanzadeh, H.
R. Tetrahedron Lett. 2007, 48, 1179–1182; Adib, M.; Sheibani, E.; Mostofi, M.;
Ghanbary, K.; Bijanzadeh, H. R. Tetrahedron 2006, 62, 3435–3438; Adib, M.;
Mahdavi, M.; Mahmoodi, N.; Pirelahi, H.; Bijanzadeh, H. R. Synlett 2006, 1765–
1767.
shift may then result in isoxazolium N-oxide intermediate 7.
Nucleophilic addition of a second isocyanide to 7 would yield the
2:1 adduct 8, which can undergo cyclization to form bicyclic inter-
mediate 9. This bicyclic intermediate would then rearrange to
afford 5-(alkylamino)-4-aryl-3-isoxazolecarboxamide 4.
23. The procedure for the preparation of N3-cyclohexyl-5-(cyclohexylamino)-4-
phenyl-3-isoxazolecarboxamide (4a) is described as an example: A mixture of 1-
nitro-2-phenylethylene (0.149 g, 1 mmol) and cyclohexyl isocyanide (0.240 g,
2.2 mmol) in H2O (2 mL) was stirred at 80 °C for 2.5 h, and then the reaction
mixture was cooled to room temperature. The aqueous phase was extracted
with CH2Cl2 (2 Â 5 mL) and the combined organic layers were dried over
MgSO4. The solvent was evaporated and the residue was purified by column
chromatography using n-hexane/EtOAc (4:1) as an eluent. The solvent was
removed and the product was obtained as colorless crystals, mp 74–76 °C,
In conclusion, we have reported a convenient, simple, and effi-
cient synthesis of 5-(alkylamino)-4-aryl-3-isoxazolecarboxamides
of potential synthetic and pharmacological interest. The use of
water as a green medium, simple and readily available starting
materials, and good to excellent yields of the products are the main
advantages of this method. The simplicity of this method makes it
an interesting alternative to other isoxazole syntheses.29 To the
best of our knowledge, this is the first synthesis of 5-amino-3-iso-
xazolecarboxamides. In this reaction, the nitrogen and oxygen
atoms in the isoxazole ring are unusually derived from the nitro
group of the activated styrene. In the previously reported conden-
sation of methylene isocyanides and nitroolefins, the nitro group is
eliminated or appears in the obtained pyrrole product.
yield 0.32 g, 87%. IR (KBr) (m
max/cmÀ1): 3314 (NH), 1664 (C@O), 1614, 1553,
1510, 1479, 1450, 1371, 1348, 1313, 1245, 1231, 1207, 1144, 1114, 1086, 1010,
891, 837, 758, 698. EI-MS m/z (%): 367 (M+, 46), 319 (6), 242 (75), 187 (16), 160
(57), 133 (31), 117 (17), 83 (100), 55 (69). Anal. Calcd for C22H29N3O2 (367.49):
C, 71.9; H, 8.0; N, 11.4. Found: C, 71.8; H, 8.1; N, 11.2%. 1H NMR (300.1 MHz,
CDCl3): d 1.18–2.08 [20H, m, 2CH(CH2)5], 3.52–3.67 [1H, m, NCH(CH2)5], 3.80–
3.92 [1H, m, NCH(CH2)5], 4.59 (1H, d, J = 7.5 Hz, NH), 6.51 (1H, d, J = 7.9 Hz,
NHC@O), 7.27–7.32 (1H, m, CH), 7.38–7.42 (4H, m, 4CH). 13C NMR (75.5 MHz,
CDCl3): d 24.76, 24.79, 25.39, 25.47, 32.83 and 33.84 (6CH2), 48.18 and 52.41
(2NHCH), 93.44 (ONC@C), 127.10, 128.66 and 129.66 (3CH), 129.75 (C), 156.85
(N@C), 158.97 (ONC@C), 166.85 (C@O). N3-(tert-Butyl)-5-(tert-butylamino)-4-
phenyl-3-isoxazolecarboxamide (4b): Yield 0.29 g, 91%. Colorless crystals, mp
120–121 °C. 1H NMR (500.1 MHz, CDCl3): d 1.40 and 1.41 [18H, 2s, 2C(CH3)3],
4.64 (1H, s, NH), 6.45 (1H, br s, NHC@O), 7.30 (1H, tt, J = 1.4, 7.3 Hz, CH), 7.36
(2H, d, J = 7.7 Hz, 2CH), 7.41 (2H, dd, J = 7.3, 7.7 Hz, 2CH). 13C NMR (125.8 MHz,
Acknowledgment
This research was supported by the Research Council of the Uni-
versity of Tehran as research project (6102036/1/03).
CDCl3):
d 28.71 and 29.96 [2C(CH3)3], 51.59 and 53.28 [2C(CH3)3], 95.11
(ONC@C), 127.16, 128.76 and 129.55 (3CH), 129.92 (C), 156.50 (N@C), 158.98
(ONC@C), 167.43 (C@O). N3-Cyclohexyl-5-(cyclohexylamino)-4-(4-methylph-
enyl)-3-isoxazolecarboxamide (4c): Yield 0.34 g, 90%. Colorless crystals, mp
125 °C. 1H NMR (500.1 MHz, CDCl3): d 1.15–2.05 [20H, m, 2CH(CH2)5], 2.36
(3H, s, CH3), 3.54–3.63 [1H, m, NCH(CH2)5], 3.82–3.91 [1H, m, NCH(CH2)5], 4.51
(1H, d, J = 8.1 Hz, NH), 6.47 (1H, d, J = 7.9 Hz, NHC@O), 7.21 (2H, d, J = 8.1 Hz,
2CH), 7.28 (2H, d, J = 8.1 Hz, 2CH). 13C NMR (125.8 MHz, CDCl3): d 21.20 (CH3),
24.73, 24.77, 25.43, 25.51, 32.84 and 33.87 (6CH2), 48.17 and 52.43 (2NHCH),
93.53 (ONC@C), 126.68 (C), 129.37 and 129.61 (2CH), 136.87 (C), 156.53 (N@C),
159.03 (ONC@C), 166.87 (C@O). 4-(4-Bromophenyl)-N3-cyclohexyl-5-(cyclohex-
ylamino)-3-isoxazolecarboxamide (4g): Yield 0.39 g, 88%. Colorless crystals, mp
155–156 °C. 1H NMR (500.1 MHz, CDCl3): d 1.16–2.04 [20H, m, 2CH(CH2)5],
3.54–3.63 [1H, m, NCH(CH2)5], 3.81–3.90 [1H, m, NCH(CH2)5], 4.50 (1H, d,
J = 8.1 Hz, NH), 6.52 (1H, d, J = 7.8 Hz, NHC@O), 7.27 (2H, d, J = 8.3 Hz, 2CH),
7.51 (2H, d, J = 8.3 Hz, 2CH). 13C NMR (125.8 MHz, CDCl3): d 24.71, 24.80, 25.39,
25.49, 32.86 and 33.84 (6CH2), 48.29 and 52.48 (2NHCH), 92.58 (ONC@C),
121.13 and 128.81 (2C), 131.44 and 131.77 (2CH), 156.18 (N@C), 158.84
(ONC@C), 166.81 (C@O). N3-Cyclohexyl-5-(cyclohexylamino)-4-(2-thienyl)-3-
isoxazolecarboxamide (4i): Yield 0.31 g, 85%. Colorless crystals, mp 96–97 °C.
1H NMR (500.1 MHz, CDCl3): d 1.16–2.05 [20H, m, 2CH(CH2)5], 3.58–3.67 [1H,
m, NCH(CH2)5], 3.84–3.93 [1H, m, NCH(CH2)5], 4.82 (1H, d, J = 7.5 Hz, NH), 6.46
(1H, br s, NHC@O), 7.06 (1H, dd, J = 3.6, 5.2 Hz, CH), 7.19 (1H, d, J = 3.6 Hz, CH),
7.29 (1H, d, J = 5.2 Hz, CH). 13C NMR (125.8 MHz, CDCl3): d 24.64, 24.79, 25.41,
25.50, 32.83 and 33.73 (6CH2), 48.30 and 52.45 (2NHCH), 87.19 (ONC@C),
125.00, 127.37 and 127.47 (3CH), 130.50 (C), 156.37 (N@C), 158.74 (ONC@C),
167.05 (C@O). 4-(4-Chlorophenyl)-N3-cyclohexyl-5-(cyclohexylamino)-3-iso-
xazolecarboxamide (4l): Yield 0.37 g, 92%. Colorless crystals, mp 187–188 °C.
1H NMR (500.1 MHz, CDCl3): d 1.15–2.00 [20H, m, 2CH(CH2)5], 3.50–3.61 [1H,
m, NCH(CH2)5], 3.79–3.87 [1H, m, NCH(CH2)5], 4.56 (1H, d, J = 8.0 Hz, NH), 6.56
(1H, d, J = 8.0 Hz, NHC@O), 7.32 (2H, d, J = 8.9 Hz, 2CH), 7.33 (2H, d, J = 8.9 Hz,
2CH). 13C NMR (125.8 MHz, CDCl3): d 24.69, 24.77, 25.34, 25.45, 32.78 and
33.77 (6CH2), 48.25 and 52.44 (2NHCH), 92.47 (ONC@C), 128.26 (C), 128.74
and 131.08 (2CH), 132.92 (C), 156.17 (N@C), 158.83 (ONC@C), 166.81 (C@O).
24. Selected X-ray crystallographic data for compound 4b: C18H25N3O2, monoclinic,
space group = P21/n, a = 10.3226(12) Å, b = 15.1764(18) Å, c = 12.1519(14) Å,
References and notes
1. Multicomponent Reactions; Zhu, J., Bienaymé, H., Eds.; Wiley-VCH: Weinheim,
2005.
2. Sutharchanadevi, M.; Murugan, R. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: London, 1996; Vol.
3, pp 221–260. and references cited therein.
3. Giomi, D.; Cordero, F. M.; Machetti, F. In Comprehensive Heterocyclic Chemistry
III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Vol. 4;
Elsevier Science, 2008; pp 365–483. and references cited therein.
4. Goel, A.; Madan, A. K. Struct. Chem. 1997, 8, 155–159.
5. Martin, S. W.; Bishop, F. E.; Kerr, B. M.; Moor, M.; Moore, M.; Sheffels, P.;
Rashed, M.; Slatter, J. G.; Berthon-Cédille, L.; Lepage, F.; Descombe, J. J.; Picard,
M.; Baillie, T. A.; Levy, R. H. Drug Metab. Dispos. 1997, 25, 40–46.
6. Romagnoli, C.; Vicentini, C. B.; Mares, D. Lett. Appl. Microbiol. 1995, 20, 5–6;
Raffa, D.; Daidone, G.; Maggio, B.; Schillaci, D.; Plescia, F.; Torta, L. Il Farmaco
1999, 54, 90–94.
7. Wickiser, D. I. U.S. Patent 4,336,264, 1982; Chem. Abstr. 1982, 96, 162684k.
8. Gassner, W.; Imhof, R.; Kybruz, E. U.S. Patent 5,204,482, 1993; Chem. Abstr.
1990, 113, 40671c.
9. Kaemmerer, F. J.; Schleyerbach, R. DE 3405725 (A1), 1985; Chem. Abstr. 1986,
104, 50864w.
10. Nantermet, P. G.; Barrow, J. C.; Lundell, G. F.; Pellicore, J. M.; Rittle, K. E.; Young,
M. B.; Freidinger, R. M.; Connolly, T. M.; Condra, C.; Karczewski, J.; Bednar, R. A.;
Gaul, S. L.; Gould, R. J.; Prendergast, K.; Selnick, H. G. Bioorg. Med. Chem. Lett.
2002, 12, 319–323.
11. Chan, M. F.; Kois, A.; Verner, E. J.; Raju, B. G.; Castillo, R. S.; Wu, C.; Okun, I.;
Stavros, F. D.; Balaji, V. N. Bioorg. Med. Chem. 1998, 6, 2301–2316.
12. Nishiwaki, T.; Saito, T. J. Chem. Soc. (C) 1971, 3021–3026.
13. Beccalli, E. M.; Manfredi, A.; Marchesini, A. J. Org. Chem. 1985, 13, 2372–2375;
Bourbeau, M. P.; Rider, J. T. Org. Lett. 2006, 8, 3679–3680.
14. Kong, W. C.; Kim, K.; Park, Y. J. Heterocycles 2001, 55, 75–89.
15. Alberola, A.; Gonzalez, A. M.; Laguna, M. A.; Pulido, F. J. J. Org. Chem. 1984, 49,
3423–3424.
a
= 90°, b = 108.478(2)°,
c
= 90°, V = 11805.6(4) Å3, T = 295(2) K, Z = 4,
16. Letourneau, J. J.; Riviello, C.; Ohlmeyer, M. H. J. Tetrahedron Lett. 2007, 48,
Dcalcd = 1.160 g cmÀ3
,
l
= 0.077 mmÀ1
,
2306 observed reflections, final
1739–1743.
17. Li, C. J.; Chan, T. H. Organic Reactions in Aqueous Media; Wiley: New York, 1997;
Organic Synthesis in Water; Grieco, P. A., Ed.; Thomson Science: Glasgow,
Scotland, 1998; Li, C. J. Chem. Rev. 2005, 105, 3095–3165.
18. Breslow, R. Acc. Chem. Res. 1991, 24, 159–164; Breslow, R. Acc. Chem. Res. 2004,
37, 471–478.
19. Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985, 1098–
1100; Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron 1990, 46,
7587–7598; Fumoto, Y.; Eguchi, T.; Uno, H.; Ono, N. J. Org. Chem. 1999,
64, 6518–6521.
R1 = 0.048, wR2 = 0.139 and for all data R1 = 0.072, wR2 = 0.159. CCDC 716964
contains the supplementary crystallographic data for this Letter. These data
can be obtained free of charge from The Cambridge Crystallographic Data
25. Dömling, A. Chem. Rev. 2006, 106, 17–89; Dömling, A.; Ugi, I. Angew. Chem., Int.
Ed. 2000, 39, 3168–3210.
26. Walborsky, H. M.; Periasamy, M. P. In The Chemistry of Functional Groups,
Supplement C; Patai, S., Rappaport, Z., Eds.; Wiley: New York, 1983; pp 835–
837. Chapter 20.
20. Guo, C.; Xue, M. X.; Zhu, M. K.; Gong, L. Z. Angew. Chem., Int. Ed. 2008, 47, 3414–
3417.
27. Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810–819.
28. Ugi, I. Isonitrile Chemistry; Academic Press: London, 1971.
29. Sheng, S. R.; Liu, X. L.; Xu, Q.; Song, C. S. Synthesis 2003, 2763–2764; Cecchi, L.;
De Sarlo, F.; Machetti, F. Eur. J. Org. Chem. 2006, 4852–4860; Hansen, T. V.; Wu,
P.; Fokin, V. V. J. Org. Chem. 2005, 70, 7761–7764; Ahmed, M. S. M.; Kobayashi,
K.; Mori, A. Org. Lett. 2005, 7, 4487–4489; Waldo, J. P.; Larock, R. C. Org. Lett.
2005, 7, 5203–5205; Itoh, K. I.; Sakamaki, H.; Nakazato, N.; Horiuchi, A.; Horn,
E.; Horiuchi, C. A. Synthesis 2005, 3541–3548; Dadiboyena, S.; Xu, J. P.; Hamme,
A. T. Tetrahedron Lett. 2007, 48, 1295–1298.
21. Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246–1251.
22. Adib, M.; Sheibani, E.; Bijanzadeh, H. R.; Zhu, L. G. Tetrahedron 2008, 64, 10681–
10686; Adib, M.; Sayahi, M. H.; Ziyadi, H.; Zhu, L. G.; Bijanzadeh, H. R. Synthesis
2008, 3289–3294; Adib, M.; Sheibani, E.; Zhu, L. G.; Bijanzadeh, H. R. Synlett
2008, 2941–2944; Adib, M.; Mohammadi, B.; Bijanzadeh, H. R. Synlett 2008,
3180–3182; Adib, M.; Mohammadi, B.; Bijanzadeh, H. R. Synlett 2008, 177–
180; Adib, M.; Sayahi, M. H.; Ziyadi, H.; Bijanzadeh, H. R.; Zhu, L. G. Tetrahedron