10636
Y. Fukusaki et al. / Tetrahedron 65 (2009) 10631–10636
1153,1096,1034,933,864,794,731, 648, 440, 412 cmꢁ1. Anal. Calcdfor
C19H30O2: C, 78.6; H, 10.4. Found: C, 78.3; H, 10.6.
precluded the detailed analysis of the reaction. When the thermal reaction was
carried out in toluene, the reaction was very sluggish. The total yield of the
isomers was 31% and the starting material still remained when the reaction
was carried out at 100 ꢀC for 231 h. The decomposition of 1 was observed when
the reaction of 1 was carried out in dioxane at 100 ꢀC.
6. Exposure of 1 to a solution of DBU in dioxane for a long period at room tem-
perature also afforded 3. The structure of 3 was confirmed by an NOESY
experiment as shown below.
4.1.3.3. Compound 4. Pale yellow oil; 1H NMR (300 MHz, CDCl3)
6.62 (s, 1H), 6.00 (d, J¼1.2 Hz, 1H), 5.23 (t, J¼6.9 Hz, 1H), 4.12 (q,
J¼7.2 Hz, 2H), 3.21 (d, J¼0.9 Hz, 2H), 2.19 (d, J¼6.9 Hz, 2H), 1.24 (t,
J¼7.2 Hz, 3H), 1.15 (s, 9H), 1.05 (s, 9H); 13C NMR (150 MHz, CDCl3)
171.6,150.9,146.5,130.5,123.7,123.2,115.0, 60.6, 43.6, 36.3, 34.9, 31.5,
30.6, 30.3, 14.2; IR (neat) 3452, 3048, 2965, 2869, 2360, 1739, 1637,
NOE
CO2Et
1464,1389,1364,1330,1248,1154,1036, 866, 822, 669, 468, 406 cmꢁ1
.
H
H
Anal. Calcd for C19H30O2: C, 78.6; H, 10.4. Found: C, 78.3; H, 10.7.
H
t-Bu
NOE
H
4.1.3.4. Compound 6. Pale yellow oil; 1H NMR (300 MHz, CDCl3)
7.72 (d, J¼6.3 Hz, 1H), 6.43 (d, J¼6.3 Hz, 1H), 4.70 (s, 1H), 3.87–4.33
(m, 10H), 3.48 (d, J¼15.3 Hz, 1H), 3.35 (d, J¼15.9 Hz, 1H), 1.03–1.32
(m, 15H); 13C NMR (150 MHz, CDCl3) 171.7, 150.8, 146.5, 130.5, 123.7,
123.2, 114.9, 60.6, 43.6, 36.3, 34.8, 31.4, 30.7, 30.65 30.60, 30.3, 29.8,
14.2; IR (neat) 3629, 3433, 2983, 2940, 2905, 1732, 1627, 1556, 1466,
1446, 1391, 1368, 1253, 1178, 1095, 1055, 1027, 958, 918, 863, 841,
772, 729, 471 cmꢁ1. Anal. Calcd for C23H30O10: C, 59.2; H, 6.48.
Found: C, 59.0; H, 6.48.
3
t-Bu
7. We also monitored the isomerization of 1 in dioxane-d8-TFA by 1H NMR and
confirmed that compounds 3 and 4 were formed and isomerized in the reaction
mixture.
8. Though we carried out the isomerization of several substrates to examine the
effect of the substituents, the isolation and analysis of the products turned out
to be extremely difficult.
9. The structures of 6 and 7 were confirmed by an NOESY experiment and an
HMBC experiment as shown below.
4.1.3.5. Compound 7. Pale yellow oil; 1H NMR (300 MHz, CDCl3)
7.42 (d, J¼6.0 Hz, 1H), 6.81 (d, J¼6.3 Hz, 1H), 5.59 (s, 1H), 3.91–4.36
(m, 10H), 3.36 (d, J¼16.2 Hz, 1H), 3.29 (d, J¼16.2 Hz, 1H), 1.11–1.31
(m, 15H); 13C NMR (150 MHz, CDCl3) 169.5, 168.6, 167.1, 164.7, 164.3,
139.3, 136.0, 134.4, 133.2, 128.0, 124.9, 62.1, 61.9, 61.6, 61.3, 61.1, 41.5,
40.7, 14.2, 14.1, 14.0, 14.0, 13.8; IR (neat) 3648, 2983, 2939, 2906,
1738, 1616, 1541, 1467, 1446, 1391, 1368, 1331, 1258, 1176, 1097, 1082,
HMBC
NOE
CO2Et
CO2Et
H
H
HMBC
CO2Et
CO2Et
H
H
C
EtO2C
EtO2C
NOE
C
CO2Et
CO2Et
H
EtO2C
EtO2C
H
6
7
1053, 1028, 937, 862, 803, 766, 441 cmꢁ1. Anal. Calcd for C23H30O10
C, 59.2; H, 6.48. Found: C, 59.1; H, 6.47.
:
10. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Lyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.
V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03,
Revision B.03; Gaussian: Pittsburgh, PA, 2003.
11. The theoretical calculation of 5 and the isomers was not carried out since the
compounds were expected to adopt various conformations and the analysis
would be very difficult.
12. Compound B was synthesized by the [3þ2þ2] cocyclization and an X-ray
crystallographic analysis was carried out. The details are described in Supple-
mentary data.
13. (a) Saebø, S.; Boggs, J. E. J. Mol. Struct.: THEOCHEM 1982, 87, 365–373; (b)
Schulman, J. M.; Disch, R. L.; Sabio, M. L. J. Am. Chem. Soc. 1982, 104, 3785–3788;
(c) Kao, J. J. Am. Chem. Soc. 1987, 109, 3817–3829; (d) Donovan, W. H.; White, W.
E. J. Org. Chem. 1996, 61, 969–977.
Acknowledgements
S.K. thanks JSPS for providing Research Fellowships for Young
Scientists.
Supplementary data
Experimental procedures and characterization data (pdf), and
the details of the X-ray structural determination of B (CIF) are
available. Supplementary data associated with this article can be
References and notes
1. (a) Spangler, C. W. Chem. Rev. 1976, 76, 187–217; (b) Okajima, T. J. Org. Chem.
2002, 67, 625–632; (c) Sugimura, T.; Kagawa, M.; Ohuchi, N.; Hagiya, K.;
Okuyama, T. Bull. Chem. Soc. Jpn. 2005, 78, 671–676; (d) Kubota, Y.; Satake, K.;
Okamoto, H.; Kimura, M. Org. Lett. 2006, 8, 5469–5472; (e) Yamabe, S.; Tsu-
chida, N.; Yamazaki, S. J. Chem. Theory Comput. 2005, 1, 944–952.
14. For the kinetic studies on the isomerization of cycloheptadienes, see: (a) Baldwin,
J. E.; Raghavan, A. S. J. Org. Chem. 2004, 69, 8128–8130; (b) Mironov, V. A.; Chizhov,
O. S.; Kimelfeld, I. M.; Akhrem, A. A. Tetrahedron Lett. 1969, 10, 499–500.
15. For the theoretical studies on the isomerization of cycloheptadienes, see: (a)
Hess, B. A., Jr. Int. J. Quantum Chem. 2002, 90, 1064–1070; (b) Hess, B. A., Jr.;
Baldwin, J. E. J. Org. Chem. 2002, 67, 6025–6033.
16. We assume that the [1, 5] sigmatropic rearrangement of 1 is a faster process
compared to the keto-enol tautomerization of 1, since only a small amount of
compound 3 was isolated: if the keto-enol tautomerization is a faster process,
a significant amount of 3 would be isolated.
17. Alternatively, the thermal isomerization of 5 might proceed via the repeated
keto-enol tautomerization of 5. Ling, R.; Yoshida, M.; Mariano, P. S. J. Org. Chem.
1996, 61, 4439–4449.
18. Calculation indicated that the stability of 13 was comparable to that of 15 (vide
infra).
2. (a) Rubin, M. S. J. Am. Chem. Soc. 1981, 103, 7791–7792; (b) Berson, J. A.; Willcott,
M. R. J. Am. Chem. Soc. 1965, 87, 2752–2753; (c) Dewar, M. J. S.; Landman, D. J.
Am. Soc. Chem. 1977, 99, 2453–2466; (d) Jarzecki, A. A.; Gajewski, J.; Davidson,
E. R. J. Am. Chem. Soc. 1999, 121, 6928–6935.
3. (a) Capon, B.; Lew, C. S. Q. J. Org. Chem. 1992, 57, 5528–5530; (b) Lew, C. S. Q.;
Capon, B. J. Org. Chem. 1997, 62, 5344–5353; (c) Barbosa, L. A.; Mann, J.; Wilde,
P. D. Tetrahedron 1989, 45, 4619–4626; (d) Mori, A.; Kubota, T.; Takeshita, H.
Bull. Chem. Soc. Jpn. 1988, 61, 3965–3971.
4. (a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126, 10540–
10541; (b) Saito, S.; Komagawa, S. Angew. Chem., Int. Ed. 2006, 45, 2446–2449;
(c) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72,
9114–9120; (d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173–3176; (e)
Yamasaki, R.; Sotome, I.; Komagawa, S.; Azumaya, I.; Masu, H.; Saito, S. Tetra-
hedron Lett. 2009, 50, 1143–1145; (f) Komagawa, S.; Takeuchi, K.; Sotome, I.;
Azumaya, I.; Masu, H.; Yamasaki, R.; Saito, S. J. Org. Chem. 2009, 74, 3323–3329;
For review, see: (g) Komagawa, S.; Yamasaki, R.; Saito, S., J. Synth. Org. Chem. Jpn.
2008, 66, 974–982
19. Attempted observation of the cation 14 in TFA was unsuccessful, probably due
to the low basicity of 3. Alternatively, the formation of another cationic species,
which was tentatively assigned as a tropylium ion, was observed. As for the
basicity of cycloheptatriene, see: Salpin, J.-Y.; Mormann, M.; Tortajada, J.;
Nguyen, M.-T.; Kuck, D. Eur. J. Mass Spectrom. 2003, 9, 361–376.
5. When the thermal reaction of 1 was carried out at higher temperature (130 ꢀC)
or for a longer period (150 h), the amount of 1 decreased and compound 2 was
formed as the major product. However, the formation of unidentified products