Organic Letters
Letter
up. For optical properties of the photoreactor, see: Le, C.; Wismer, M.
K.; Shi, Z.-C.; Zhang, R.; Conway, D. V.; Li, G.; Vachal, P.; Davies, I.
W.; MacMillan, D. W. ACS Cent. Sci. 2017, 3, 647−653.
with a purification. Financial support for this project was
provided by NIGMS R35 GM126986.
(17) The products from hydroacylation with nonpolar aliphatic acids
were easier to isolate when the reactions were conducted in the
absence of diphenyl disulfide. In these cases, additional phosphine was
added to compensate for the slightly reduced yield.
(18) Ahn, Y.; Cohen, T. Tetrahedron Lett. 1994, 35, 203−206.
(19) Le Berre, C.; Serp, P.; Kalck, P.; Torrence, G. P. Acetic Acid. In
Ullmann’s Encyclopedia of Industrial Chemistry [Online]; Wiley-VCH
(accessed Oct. 7, 2019).
REFERENCES
■
(1) Kvaerno, L.; Carreira, E. M. Classics in Stereoselective Synthesis;
John Wiley & Sons: Germany, Weinheim, 2009. (b) Fischbach, M. A.;
Walsh, C. T. Chem. Rev. 2006, 106, 3468−3496. (c) Prasad, P. K.;
Reddi, R. N.; Arumugam, S. Org. Biomol. Chem. 2018, 16, 9334−
9348.
(2) For recent reviews: (a) Willis, M. C. Chem. Rev. 2010, 110, 725−
748. (b) Willis, M. C. Comprehensive Organic Synthesis II 2014, 4,
961−983.
(3) For select examples: (a) Leung, J. C.; Krische, M. J. Chem. Sci.
2012, 3, 2202−2209. (b) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem.
Res. 2008, 41, 222−234. (c) Murphy, S. K.; Bruch, A.; Dong, V. M.
Chem. Sci. 2015, 6, 174−180. (d) Tsuji, Y.; Yoshii, S.; Ohsumi, T.;
Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1987, 331, 379−385.
(e) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org. Chem.
1990, 55, 1286−1291.
(4) (a) Caronna, T.; Minisci, F. Rev. React. Species Chem. React.
1973, 1, 263−318. (b) Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M.
Green Chem. 2019, 21, 748−764. (c) Capaldo, L.; Riccardi, R.;
Ravelli, D.; Fagnoni, M. ACS Catal. 2018, 8, 304−309. (d) Chu, L.;
Lipshultz, J. M.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54,
7929−7933. (e) Zhao, J. J.; Zhang, H. H.; Shen, X.; Yu, S. Org. Lett.
2019, 21, 913−916. (f) Morack, T.; Mu
R. Angew. Chem., Int. Ed. 2019, 58, 1208−1212. (g) Goti, G.;
Bieszczad, B.; Vega-Penaloza, A.; Melchiorre, P. Angew. Chem., Int. Ed.
2019, 58, 1213−1217. (h) Ociepa, M.; Baka, O.; Narodowiec, J.;
Gryko, D. Adv. Synth. Catal. 2017, 359, 3560−3565. (i) Fan, X.; Lei,
T.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 4153−4158.
(5) For an example of a cross-coupling reaction that proceeds by
HAT with aldehydes with particularly high chemoselectivity, see:
Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2017, 139, 11353−
11356.
(20) Decarbonylation may also be operative. For a general review on
decarboxylative transformations with carboxylic acids, see: Schwarz, J.;
̈
Konig, B. Green Chem. 2018, 20, 323−361.
(21) The excited state of the photocatalyst is not quenched by
diphenyl disulfide (see SI). Therefore, one possibility is that the
reduction of diphenyl disulfide is competitive with the reduction of
alkyl radical 45, which leads to competitive hydrogen atom transfer
from solvent to furnish the product.
(22) (a) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.;
Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17,
5712−5719. (b) Ep = 0.89 V vs SCE in MeCN for dimethyl phenyl
phosphine.
(23) Wayner, D. D. M.; Houmam, A.; et al. Acta Chem. Scand. 1998,
52, 377−384.
(24) A reduction protonation mechanism was also proposed in the
activation of oximes with phosphines. Xia, P. J.; Ye, Z. P.; Hu, Y. Z.;
Song, D.; Xiang, H. Y.; Chen, X. Q.; Yang, H. Org. Lett. 2019, 21,
2658−2662.
̈
ck-Lichtenfeld, C.; Gilmour,
̃
́
(6) Vanoye, L.; Favre-Reguillon, A.; Aloui, A.; Philippe, R.; De
Bellefon, C. RSC Adv. 2013, 3, 18931−18937.
(7) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int.
Ed. 2009, 48, 2854−2867.
(8) For recent examples, see: Ni, S.; Padial, N. M.; Kingston, C.;
Vantourout, J. C.; Schmitt, D. C.; Edwards, J. T.; Kruszyk, M. M.;
Merchant, R. R.; Mykhailiuk, P. K.; Sanchez, B. B.; Yang, S.; Perry, M.
A.; Gallego, G. M.; Mousseau, J. J.; Collins, M. R.; Cherney, R. J.;
Lebed, P. S.; Chen, J. S.; Qin, T.; Baran, P. S. J. Am. Chem. Soc. 2019,
141, 6726−6739. (b) Wang, J.; Cary, B. P.; Beyer, P. D.; Gellman, S.
H.; Weix, D. J. Angew. Chem., Int. Ed. 2019, 58, 12081−12085.
(c) Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612−3615.
(9) (a) Zhou, Y.; Bandar, J. S.; Buchwald, S. L. J. Am. Chem. Soc.
2017, 139, 8126−8129. (b) He, J.; Song, P.; Xu, X.; Zhu, S.; Wang, Y.
ACS Catal. 2019, 9, 3253−3259.
(10) Stache, E. E.; Ertel, A. B.; Rovis, T.; Doyle, A. G. ACS Catal.
2018, 8, 11134−11139.
(11) (a) Marque, S.; Tordo, P. Top. Curr. Chem. 2005, 250, 43.
(b) Bentrude, W. G.; Hansen, E. R.; Khan, W. A.; Min, T. B.; Rogers,
P. E. J. Am. Chem. Soc. 1973, 95, 2286−2293.
(12) Zhang, M.; Xie, J.; Zhu, C. Nat. Commun. 2018, 9, 3517.
(13) Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329−
10332.
(14) Budnikova, Y. G.; Kargin, Y. M. Russ. J. Gen. Chem. 2001, 71,
1393−1421.
(15) A similar trend between yield and electron transfer rate was also
observed with 2-(trifluoromethyl) styrene (KSV = 268). Notably, an
increase in yield was observed with 2-(trifluoromethyl) styrene
relative to diphenyl ethylene for triphenyl phosphine and ethyl
diphenyl phosphinite, which is consistent with the competitive
(16) While Kessils provide similar reactivity under optimized
1
conditions (Scale: 0.2 mmol, 64% H NMR yield), a photoreactor
was used to provide a standardized light and temperature reaction set
E
Org. Lett. XXXX, XXX, XXX−XXX