10.1002/ejoc.201801124
European Journal of Organic Chemistry
FULL PAPER
Stephenson, Chem. Rev. 2015, 115, 8976−9027; g) P. Ghosh, B.
Ganguly, S. Das, Appl. Organomet. Chem. 2017, 32, e4173.
NMR (100 MHz, CDCl3): δ = 204.6, 136.2, 132.8, 128.6, 128.3,
35.4, 19.2.
[2] a) N. Calloway, Chem. Rev. 1935, 17, 327−392; b) A. Fürstner, D.
Voigtländer, W. Schrader, D. Giebel, M. Reetz, Org. Lett. 2001, 3,
417−420; c) S. Gmouh, H. Yang, M. Vaultier, Org. Lett. 2003, 5,
2219−2222; d) G. Sartori and R. Maggi, Chem. Rev. 2006, 106,
1077−1104; e) Y. Zhang, F. Sun, W. Dan, X. Fang, J. Org. Chem. 2017,
82, 12877−12887.
[3] a) J. Brunet, R. Chauvin, Chem. Soc. Rev. 1995, 24, 89−95; b) M.
Blangetti, H. Rosso, C. Prandi, A. Deagostino, P. Venturello, Molecules
2013, 18, 1188−1213; c) F. Gao, H. Feng, Z. Sun, Tetrahedron Lett. 2014,
55, 6451−6454; d) X. Wu, Chemistry 2015, 21, 12252−12265; e) M.
Heravi, B. Heidari, M. Ghavidel, T. Ahmadi, Curr. Org. Chem. 2017, 21,
2249−2313; f) D. Roy, Y. Uozumi, Adv. Synth. Catal. 2018, 360, 602−625;
g) J. Rygus, C. Crudden, J. Am. Chem. Soc. 2017, 139, 18124−18137; h)
P. Phukan, P. Boruah, P. Gehlot, A. Kumar, A. Bordoloi, D. Sarma,
[4] a) C. Sik, K. Itotani, S. Uemura, J. Organomet. Chem. 1993, 443,
253−259; b) A. Forbes, G. Meier, E. Jones-Mensah, J. Magolan, Eur. J.
Org. Chem. 2016, 2016, 2983−2987; c) A. Feiz, M. Amini, A. Bazgir, Mol.
Catal. 2017, 438, 159−166; d) B. Movassagh, F. Hajizadeh, E.
Mohammadi, Appl. Organometal. Chem. 2018, 32, e3982.
[5] a) L. Gooßen, K. Ghosh, Angew. Chem. Int. Ed. Engl. 2001, 40,
3458−3460; b) B. Xin, Y. Zhang, K. Cheng, J. Org. Chem. 2006, 71,
5725−5731; c) W. Dzik, P. Lange, L. Gooßen, J. Chem. Sci. 2012, 3,
2671−2678; d) A. Yu, L. Shen, X. Cui, D. Peng, Y. Wu, Tetrahedron 2012,
68, 2283−2288; e) Q. Chen, X. Fan, L. Zhang, L. Yang, RSC Adv. 2014,
4, 53885−53890.
1-Phenyl-1-butanone (4n)[23]: Colorless oil; 54.8 mg (37 %); Rf
= 0.40 (EtOAc:Hexane=1:20); 1H NMR (400 MHz, CDCl3): δ =
7.98-7.95 (m, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.46 (t, J = 7.5 Hz,
2H), 2.95 (t, J = 7.3 Hz, 2H), 1.78 (sext, J = 7.4 Hz, 2H), 1.00(t, J
= 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 200.4, 137.1,
132.8, 128.5, 128.0, 40.5, 17.7, 13.9.
1-(4-Benzoylphenyl)ethanone (4o)[24]: White solid, 103 mg
o
1
(46 %); m.p. 82.6-83.2 C; Rf = 0.33 (EtOAc:Hexane = 1:5); H
NMR (400 MHz, CDCl3): δ = 8.06 (d, J = 8.1 Hz, 2H), 7.87 (d, J
= 8.0 Hz, 2H), 7.81 (d, J = 8.2 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H),
7.51 (t, J = 7.7 Hz, 2H), 2.68 (s, 3H); 13C NMR (100 MHz, CDCl3):
δ = 197.5, 196.0, 141.3, 139.5, 136.9, 133.0, 130.1, 130.0, 128.5,
128.1, 26.9.
(2-Naphthalenyl)(phenyl)methanone (4p)[25]: White solid, 223
o
mg (96 %); m.p. 82.4-83.4 C; Rf = 0.63 (EtOAc:Hexane = 1:5);
1H NMR (400 MHz, CDCl3): δ = 8.28 (s, 1H), 7.95-7.86 (m, 6H),
7.65-7.50 (m, 5H); 13C NMR (100 MHz, CDCl3): δ = 196.7, 137.8,
135.2, 134.8, 132.3, 132.2, 131.8, 130.0, 129.4, 128.29, 128.29,
128.25, 127.8, 126.7, 125.7.
(4-Phenylphenyl)(phenyl)methanone (4q)[26]: White solid, 212
[6] a) H. Tatamidani, F. Kakiuchi, N. Chatani, Org. Lett. 2004, 6, 3597−3599;
b) K. Muto, J. Yamaguchi, D. Musaev, K. Itami, Nat. Commun. 2015, 6,
7508; c) L. Guo, M. Rueping, Chemistry 2016, 22, 16787−16790; d) J.
Cornella, J. Edwards, T. Qin, S. Kawamura, J. Wang, C. Pan, R.
Gianatassio, M. Schmidt, M. Eastgate, P. Baran, J. Am. Chem. Soc. 2016,
138, 2174−2177; e) T. Ben, W. Zhang, I. Yalaoui, X. Hong, Y. Yang, K.
Houk, S. Newman, J. Am. Chem. Soc. 2017, 139, 1311−1318; f) A.
Dardir, P. Melvin, R. Davis, N. Hazari, M. Mohadjer, J. Org. Chem. 2018,
83, 469−477.
mg (82 %); m.p. 102.1-102.4 oC; Rf = 0.75 (EtOAc:Hexane =
1
1:5); H NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 7.9 Hz, 2H),
7.85 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 7.9 Hz, 2H), 7.66 (d, J = 7.6
Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.53-7.47 (m, 4H), 7.42 (t, J =
7.3Hz, 1H); 13C NMR (100 MHz, CDCl3): δ = 196.3, 145.2, 139.9,
137.7, 136.2, 132.4, 130.7, 130.0, 128.9, 128.3, 128.2, 127.3,
126.9.
[7] a) L. Liebeskind, J. Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260−11261;
b) J. Villalobos, J. Srogl, L. Liebeskind, J. Am. Chem. Soc. 2007, 129,
15734−15735; c) H. Prokopcova, C. Kappe, Angew. Chem. Int. Ed. Engl.
2009, 48, 2276−2286; d) K. Kunchithapatham, C. Eichman, J. Stambuli,
Chem. Commun. 2011, 47, 12679−12681.
Acknowledgements
[8] a) X. Li, G. Zou, Chem. Commun. 2015, 51, 5089−5092; b) X. Li, G. Zou,
J. Organometal. Chem. 2015, 794, 136−145; c) B. Simmons, N. Weires, J.
Dander, N. Garg, ACS Catal. 2016, 6, 3176−3179; d) Q. Wei, R. Shi, D.
Lu, Z. Lei, RSC Adv. 2016, 6, 29245−29253; e) G. Meng, M. Szostak, Org.
Lett. 2015, 17, 4364−4367; f) M. Szostak, G, Meng, S. Shi, Synlett 2016,
27, 2530−2540; g) G. Meng, M. Szostak, Org. Biomol. Chem. 2016, 14,
5690−5707; h) C. Liu, G. Meng, Y. Liu, R. Liu, R. Lalancette, R. Szostak,
M. Szostak, Org. Lett. 2016, 18, 4194−4197; i) G. Meng, S. Shi, M.
Szostak, ACS Catal. 2016, 6, 7335−7339. j) Y. Osumi, C. Liu, M. Szostak,
Org. Biomol. Chem. 2017, 15, 8867−8871; k) C. Liu, Y. Liu, R. Liu, R.
Lalancette, R. Szostak, M. Szostak, Org. Lett. 2017, 19, 1434−1437; l) G.
Meng, R. Szostak, M. Szostak, Org. Lett. 2017, 19, 3596−3599; m) G.
Meng, R. Lalancette, R. Szostak, M. Szostak, Org. Lett. 2017, 19,
4656−4659; n) N. Weires, E. Baker, N. Garg, Nat. Chem. 2016, 8, 75−79;
o) M. Cui, H. Wu, J. Jian, H. Wang, C. Liu, S. Daniel, Z. Zeng, Chem.
Commun. 2016, 52, 12076−12079; p) H. Wu, Y. Li, M. Cui, J. Jian, Z.
Zeng, Adv. Synth. Catal. 2016, 358, 3876−3880; q) M. Cui, Z. Chen, T.
Liu, H. Wang, Z. Zeng, Tetrahedron Lett. 2017, 58, 3819−3822; r) G.
Meng, M. Szostak, Eur. J. Org. Chem. 2018, 2018, 2352-2365.
This research was supported by the Basic Science Research
Program administered through the National Research
Foundation of Korea (NRF), funded by the Ministry of Education
(2015R1D1A1A09058536) and by the Korean Ministry of
Education through the BK21-Plus Project of the Hanyang
University Graduate Program.
Keywords: N,N-Bis(methanesulfonyl)amides • Carbonylative
coupling reactions • C-N bond cleavage • Distorted amide •
Suzuki cross coupling
[1] a) J. Perez-Prieto, R. Galian, M. Miranda, Mini. Rev. Org. Chem. 2006, 3,
117−135; b) S. Horst, P. Johannes, Common Fragrance and Flavor
Materials, 5th ed. Wiley-VCH, Weinheim, 2006; c) C. Chan, Z. Zhao, J.
Lam, J. Liu, S. Chen, P. Lu, F. Mahtab, X. Chen, H. Sung, H. Kwok, Y. Ma,
I. Williams, K. Wong, B. Tang, Adv. Funct. Mater. 2012, 22, 378−389; d) I.
Jabeen, K. Pleban, U. Rinner, P. Chiba, G. Ecker, J. Med. Chem. 2012,
55, 3261−3273; e) K. Maeyama, K. Yamashita, H. Saito, S. Aikawa, Y.
Yoshida, Polym. J. 2012, 44, 315−320; f) M. Keylor, B. Matsuura, C.
[9] a) L. Pauling, R. Corey, H. Branson, Proc. Natl. Acad. Sci. USA 1951, 37,
205−211; b) A. Greenberg, C. Breneman, J. Liebman, The Amide Linkage:
Structural Significance in Chemistry, Biochemistry, and Materials Science.
Wiley-VCH, Weinheim, 2003.
[10] L. Hie, N. Fine Nathel, T. Shah, E. Baker, X. Hong, Y. Yang, P. Liu, K.
Houk, N. Garg, Nature 2015, 524, 79−83.
This article is protected by copyright. All rights reserved.