C O M M U N I C A T I O N S
Figure 4. Normalized ELISA for Her/RGD bispecific Ab.
mild aqueous reaction works over a broad pH range and expands
the repertoire of aqueous chemistries available for small molecule,
peptide, and protein modification. We believe this reaction will find
broad utility in protein chemistry and in the chemistry of phenol-
containing compounds.
Figure 3. ESI-MS analysis of purified samples containing (a) unmodified
chymotrypsinogen A and (b) chymotrypsinogen A modified with oxidized
linker 7. (c) Gel stained with coomassie blue (top) and under UV light
(bottom): lane 1, unmodified chymotrypsinogen A; lane 2, chymotrypsi-
nogen A/11; lane 3, chymotrypsinogen A/9; lane 4, unmodified myoglobin;
lane 5, myoglobin/11; lane 6, myoglobin/9; lane 7, unmodified BSA; lane
8, BSA/11; and lane 9, BSA/9.
Acknowledgment. We thank Prof. Phil Baran for useful discus-
sions. This study was supported by the Skaggs Institute for Chemical
Biology.
We envision that this tyrosine ligation reaction might be used
for the bioconjugation of a wide variety of functionalities onto
protein surfaces. To test this hypothesis, an integrin binding cyclic
RGD peptide containing an alkyne, 12, was prepared. Subsequent
Cu(I)-mediated click reaction with intermediate 7 followed by
oxidation with NBS/Py provided the labeling reagent that was then
reacted with the therapeutic antibody herceptin8 (Scheme 3). The
Supporting Information Available: Full experimental procedures
and characterization data are available for all new compounds. This
References
(1) (a) Aslam, M.; Dent, A. Bioconjugation. Protein Coupling Techniques for
Biomedical Sciences; Grove’s Dictionaries Inc.: New York, NY, 1998. (b)
Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009, 48, 6974–
6998.
(2) (a) Antos, J. M.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 10256–7. (b)
Antos, J. M.; McFarland, J. M.; Iavarone, A. T.; Francis, M. B. J. Am. Chem.
Soc. 2009, 131, 6301–6308.
Scheme 3. Preparation of Her/RGD Constructa
(3) (a) Joshi, N. S.; Whitaker, L. R.; Francis, M. B. J. Am. Chem. Soc. 2004,
126, 15942–3. (b) McFarland, J. M.; Joshi, N. S.; Francis, M. B. J. Am.
Chem. Soc. 2008, 130, 7639–44. (c) Minakawa, M.; Guo, H. M.; Tanaka,
F. J. Org. Chem. 2008, 73, 8669–72. (d) Kodadek, T.; Duroux-Richard, I.;
Bonnafous, J. C. Trends Pharmacol. Sci. 2005, 26, 210.
(4) (a) Schroete, S. J. Org. Chem. 1969, 34, 4012–14. (b) Mitchell, H.; Leblanc,
Y. J. Org. Chem. 1994, 59, 682–687. (c) Leblanc, Y.; Boudreault, N. J.
Org. Chem. 1995, 60, 4268–4271. (d) Yadav, J. S.; Reddy, B. V. S.; Kumar,
G. M.; Madan, C. Synlett 2001, 1781–1783. (e) Bombek, S.; Lenarsic, R.;
Kocevar, M.; Saint-Jalmes, L.; Desmurs, J. R.; Polanc, S. Chem. Commun.
2002, 1494–1495. (f) Yadav, J. S.; Reddy, B. V. S.; Veerendhar, G.; Rao,
R. S.; Nagaiah, K. Chem. Lett. 2002, 318–319. (g) Kinart, W. J.; Kinart,
C. M. J. Organomet. Chem. 2003, 665, 233–236. (h) Chee, G. L. Synth.
Commun. 2006, 36, 2151–2156. (i) Brandes, S.; Bella, M.; Kjoersgaard, A.;
Jorgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 1147–1151.
(5) Desimoni, G.; Faita, G.; Righetti, P. P.; Sfulcini, A.; Tsyganov, D.
Tetrahedron 1994, 50, 1821–1832.
(6) Baran, P. S.; Guerrero, C. A.; Corey, E. J. Org. Lett. 2003, 5, 1999–2001.
(7) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596–2599. (b) Tornoe, C. W.; Christensen, C.;
Meldal, M. J. Org. Chem. 2002, 67, 3057–3064. (c) Agard, N. J.; Prescher,
J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046–15047. (d) Ning,
X. H.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem., Int. Ed. 2008,
47, 2253–2255.
a (a) 7, Cu, CuSO4. (b) (i) NBS, Py, DMF; (ii) herceptin in phosphate
buffer, pH 7.4.
resulting herceptin/RGD conjugate was purified and characterized
by MALDI-TOF MS. ErbB-2 and integrin Rvꢀ3 binding ELISA
(Figure 4) demonstrated that modification of the antibody herceptin
through tyrosine conjugation did not impair its ability to bind to
ErbB-2, while introduction of the cyclic RGD peptide allowed the
antibody conjugate to bind integrin Rvꢀ3, thereby providing a new
chemical route to antibodies with multiple specificities.9
In summary, we have developed a new and versatile class of
cyclic diazodicarboxamides that react selectively with phenols and
the phenol side chain of tyrosine through an ene-like reaction. This
(8) Goldenberg, M. M. Clin. Ther. 1999, 21, 309–18.
(9) Gavrilyuk, J. I.; Wuellner, U.; Salahuddin, S.; Goswami, R. K.; Sinha, S. C.;
Barbas, C. F., III. Bioorg. Med. Chem. Lett. 2009, 19, 3716–3720.
JA909062Q
9
J. AM. CHEM. SOC. VOL. 132, NO. 5, 2010 1525