C O M M U N I C A T I O N S
only real distinctive difference observed in the 1H NMR of synthetic
1 and the natural product was the chemical shift (CD3OD, δ 4.82
vs 4.64) and multiplicity (ddd, J ) 8.4, 6.0, 1.8 Hz vs dddd, J )
9.6, 7.8, 7.2, 1.8 Hz) of C9-H adjacent to the putative sulfate ester.
Diagnostic of what proved to be a required structural reassignment,
the C9-H of the natural product exhibited an additional long-range
coupling (JP-H9 ) 7.8 Hz) characteristic of a phosphate (monoiso-
topic mass ) 492.1889) versus sulfate ester (monoisotopic mass
) 492.1794).23 Consequently, phosphate ester 2 was targeted
for synthesis (Scheme 3). Alcohol 29 was phosphorylated
(i-Pr2NP(OFm)2, tetrazole, CH2Cl2/CH3CN, 25 °C, 1 h; H2O2, 15
min, 96%)6 to give 31 that was desilylated (HF-pyr, pyr/THF, 25
°C, 4 d). Removal of the fluorenylmethyl groups in 32 (Et3N,
CH3CN, 25 °C, 16 h; Dowex Na+, 63% for two steps) unmasked
the phosphate, giving 2 (phostriecin) that was found to possess
properties identical to those reported for 1 as well as a sample24 of
natural “sultriecin” (1H NMR, 31P NMR, [R]D, TLC, HPLC,
HRMS), the latter of which displayed a 31P NMR signal like that
found with synthetic 2 (δ 3.4, CD3OD).
(2) Lewy, D. S.; Gauss, C.-M.; Soenen, D. R.; Boger, D. L. Curr. Med. Chem.
2002, 9, 2005.
(3) Isolation: (a) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J. Antibiot. 1983,
36, 1595. (b) Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer,
N. E.; Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J.
Antibiot. 1983, 36, 1601. Total syntheses: (c) Boger, D. L.; Ichikawa, S.;
Zhong, W. J. Am. Chem. Soc. 2001, 123, 4161. (d) Chavez, D. E.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2001, 40, 3667. (e) Reddy, Y. K.; Falck,
J. R. Org. Lett. 2002, 4, 969. (f) Miyashita, K.; Ikejiri, M.; Kawasaki, H.;
Maemura, S.; Imanishi, T. Chem. Commun. 2002, 742. (g) Miyashita, K.;
Ikejiri, M.; Kawasaki, H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc.
2003, 125, 8238. (h) Esumi, T.; Okamoto, N.; Hatakeyama, S. Chem.
Commun. 2002, 3042. (i) Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M.
Org. Lett. 2003, 5, 733. (j) Trost, B. M.; Frederiksen, M. U.; Papillon,
J. P.; Harrington, P. E.; Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005,
127, 3666. (k) Maki, K.; Motoki, R.; Fujii, K.; Kanai, M.; Kobayashi, T.;
Tamura, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 17111. (l) Yadav,
J. S.; Prathap, I.; Tadi, B. P. Tetrahedron Lett. 2006, 47, 3773. (m) Hayashi,
Y.; Yamaguchi, H.; Toyoshima, M.; Okado, K.; Toyo, T.; Shoji, M. Org.
Lett. 2008, 10, 1405. (n) Sarkar, S. M.; Wanzala, E. N.; Shibahara, S.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Chem. Commun. 2009, 5907.
(o) Robles, O.; McDonald, F. E. Org. Lett. 2009, 11, 5498.
(4) (a) Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem. 1997, 62, 1748.
(b) Hokanson, G. C.; French, J. C. J. Org. Chem. 1985, 50, 462.
(5) (a) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C.-M.;
Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L.
J. Am. Chem. Soc. 2003, 125, 15694. (b) Swingle, M. B.; Amable, L.;
Lawhorn, B. G.; Buck, S. B.; Burke, C. P.; Ratti, P.; Fisher, K. L.; Boger,
D. L.; Honkanen, R. E. J. Pharmacol. Exp. Ther. 2009, 331, 45.
(6) Isolation: (a) Amemiya, M.; Someno, T.; Sawa, R.; Naganawa, H.; Ishizuka,
M.; Takeuchi, T. J. Antibiot. 1994, 47, 541. (b) Amemiya, M.; Ueno, M.;
Osono, M.; Masuda, T.; Kinoshita, N.; Nishida, C.; Hamada, M.; Ishizuka,
M.; Takeuchi, T. J. Antibiot. 1994, 47, 536. Total syntheses: (c) Lawhorn,
B. G.; Boga, S. B.; Wolkenberg, S. E.; Colby, D. A.; Gauss, C.-M.; Swingle,
M. R.; Amable, L.; Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2006,
128, 16720. (d) Lawhorn, B. G.; Boga, S. B.; Wolkenberg, S. E.; Boger,
D. L. Heterocycles 2006, 70, 65. (e) Bialy, L.; Waldmann, H. Chem.sEur.
J. 2004, 10, 2759. (f) Bialy, L.; Waldmann, H. Angew. Chem., Int. Ed.
2002, 41, 1748. (g) Jung, W.-H.; Guyenne, S.; Riesco-Fagundo, C.;
Mancuso, J.; Nakamura, S.; Curran, D. P. Angew. Chem., Int. Ed. 2008,
47, 1130.
Scheme 3. Synthesis of Phostriecin (2)
(7) Isolation: (a) Ozasa, T.; Tanaka, K.; Sasamata, M.; Kaniwa, H.; Shimizu,
M.; Matsumoto, H.; Iwanami, M. J. Antibiot. 1989, 42, 1339. Total
syntheses: (b) Wang, Y.-G.; Takeyama, R.; Kobayashi, Y. Angew. Chem.,
Int. Ed. 2006, 45, 3320. (c) Shibahara, S.; Fujino, M.; Tashiro, Y.;
Takahashi, K.; Ishihara, J.; Hatakeyama, S. Org. Lett. 2008, 10, 2139.
(8) Isolation: (a) Kohama, T.; Enokita, R.; Okazaki, T.; Miyaoka, H.; Torikata,
A.; Inukai, M.; Kaneko, I.; Kagasaki, T.; Sakaida, Y.; Satoh, A.; Shiraishi,
A. J. Antibiot. 1993, 46, 1503. (b) Kohama, T.; Nakamura, T.; Kinoshita,
T.; Kaneko, I.; Shiraishi, A. J. Antibiot. 1993, 46, 1512. Total syntheses: (c)
Matsuhashi, H.; Shimada, K. Tetrahedron 2002, 58, 5619. (d) Shimada,
K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 4048. (e)
Miyashita, K.; Tsunemi, T.; Hosokawa, T.; Ikejiri, M.; Imanishi, T. J. Org.
Chem. 2008, 73, 5360.
(9) Isolation: (a) Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H. J. Antibiot.
1989, 42, 1019. Total synthesis: (b) Ko¨nig, C. M.; Gebhardt, B.; Schleth,
C.; Dauber, M.; Koert, U. Org. Lett. 2009, 11, 2728.
(10) Yang, Z.-C.; Jiang, X.-B.; Wang, Z.-M.; Zhou, W.-S. J. Chem. Soc., Perkin
Trans. 1 1997, 317.
(11) (a) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401. (b) Nicolaou,
K. C.; Patron, A. P.; Ajito, K.; Richter, P. K.; Khatuya, H.; Bertinato, P.;
Miller, R. A.; Tomaszewski, M. J. Chem.sEur. J. 1996, 2, 847.
(12) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
(13) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
(14) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.
(15) Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc.
1967, 89, 4245.
(16) (a) Georgiadis, M. P.; Couladouros, E. A. J. Org. Chem. 1986, 51, 2725.
(b) Babu, R. S.; Zhou, M.; O’Doherty, G. A. J. Am. Chem. Soc. 2004,
126, 3428.
(17) Hakimelahi, G. H.; Proba, Z. A.; Ogilvie, K. K. Tetrahedron Lett. 1981,
22, 4775.
(18) Mitsunobu, O. Synthesis 1981, 1.
(19) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
(20) Belosludtsev, Y. Y.; Borer, B. C.; Taylor, R. J. K. Synthesis 1991, 320.
(21) Uenishi, J.; Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1998,
63, 8965.
(22) Still, W. C.; Schneider, J. A. Tetrahedron Lett. 1980, 21, 1035.
(23) It also explains the observation6c that the corresponding sulfate of cytostatin
(sulfocytostatin) was found to be inactive against PP2A.
Thus, the total syntheses of 1 and 2 led to an unequivocal
reassignment of the structural composition and established the
relative and absolute stereochemical configuration of the natural
product (renamed phostriecin) heretofore known as sultriecin. Key
steps include a Brown allylation with controlled introduction of
the C9 stereochemistry, a CBS reduction to establish the lactone
C5-stereochemistry, diastereoselective oxidative ring expansion of
an R-hydroxyfuran to access the pyran lactone precursor, and single-
step installation of the sensitive triene unit through a chelation-
controlled cuprate addition with installation of the C11 stereo-
chemistry. This approach also allows ready access to analogues
that can now be used to probe important structural features required
for PP2A inhibition, the mechanism of action defined herein.25
These and related studies will be reported in due course.
Acknowledgment. We gratefully acknowledge financial support
from the National Institutes of Health (CA042056). We thank
Danielle R. Soenen for initiating the studies on sultriecin, Dr. Ernest
Lacey (Bioaustralis) for helpful discussions, and Prof. Richard E.
Honkanen for the PP2A inhibition studies. N.H. was a Skaggs
Fellow.
Supporting Information Available: Full experimental details. This
(24) Commercially available from Bioaustralis.
(25) PP2A inhibition (IC50): 1, >100 µM; 2, 0.72 µM.
References
(1) Ohkuma, H.; Naruse, N.; Nishiyama, Y.; Tsuno, T.; Hoshino, Y.; Sawada,
Y.; Konishi, M.; Oki, T. J. Antibiot. 1992, 45, 1239.
JA9097252
9
J. AM. CHEM. SOC. VOL. 132, NO. 7, 2010 2159