430
M. N. Elinson et al. / Tetrahedron Letters 51 (2010) 428–431
O
R2
O
R2
N
N
O
_
R2
O
R2
O
CN
O
B, -BH
EtOH
R1
N
N
CN
+
_
CN
R1
CN
Br2
1
B
O
R1
R2
O
R2
N
N
O
R2
O
O
-HBr
NC
NC
N
EtOH
CN
Br
R1
N
R2
O
CN
4
Scheme 4.
2. (a) Yanovskaya, L. A.; Dombrovsky, V. A.; Khusid, A. K. Tsiklopropani
s
R1
R1
funktsionalnimi gruppami. Sintez i primenenie. (Cyclopropanes with Functional
Groups. Synthesis and Application), Nauka, Moscow, 1980.; (b) Tsuji, T.; Nishida,
S. The Chemistry of the Cyclopropyl Group; Wiley and Sons: New York, 1987; (c)
Boche, G.; Walbirsky, H. M. Cyclopropane Derived Intermediates; John Wiley and
Sons: New York, 1990; (d) Rappoport, Z. The Chemistry of the Cyclopropyl Group;
Wiley and Sons: New York, 1996.
Br2
EtOH
CN
CN
CN
NC
NC
NC
CN CN
R1 = Me, Et, n-Pr
3. (a) Graham, D. W.; Ashton, W. T.; Barash, L.; Brown, J. E.; Brown, R. D.; Canning,
L. F.; Chen, A.; Springer, J. P.; Rogers, E. F. J. Med. Chem. 1987, 30, 1074–1090; (b)
Salaun, J.; Baird, M. S. Curr. Med. Chem. 1995, 2, 511–519; (c) Baba, Y.; Saha, G.;
Nakao, S.; Iwata, C.; Tanaka, T.; Ibuka, T.; Ohishi, H.; Takemoto, Y. J. Org. Chem.
2001, 66, 81–88; (d) Boger, D. L.; Hughes, T. V.; Hedrick, M. P. J. Org. Chem. 2001,
66, 2207–2216; (e) Yoshida, S.; Rosen, T. C.; Sloan, M. J.; Meyer, O. G. J.; Ye, S.;
Haufe, G.; Kirk, K. L. Bioorg. Med. Chem. 2004, 12, 2645–2652; (f) Yamaguchi, K.;
Kazuta, Y.; Hirano, K.; Yamada, S.; Matsuda, A.; Shuto, S. Bioorg. Med. Chem.
2008, 16, 8875–8881.
4. For reviews see: (a) Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251–2253; (b)
Donaldson, W. A. Tetrahedron 2001, 57, 8589–8627; (c) Reissig, H. U.; Zimmer,
R. Chem. Rev. 2003, 10. pp 1151–1150; (d) Brandt, W.; Thiemann, T. Chem. Rev.
2003, 103, 1625–1647.
Scheme 5.
synthesis of 3-substituted tetracyanocyclopropanes as reported by
Mariella and Roth.13 This method includes bromination of 2-alkyl-
substituted 1,1,3,3-tetracyanopropanes in ethanol followed by
cyclization and formation of 3-alkyl substituted 1,1,2,2-tetracy-
ano-substituted cyclopropanes (Scheme 5).13
5. (a) Brunton, L. L.; Lazo, J. S.; Lazo, P.; Keith, L. Goodman & Gilman’s The
Pharmacological Basis of Therapeutics, 11th ed.; McGraw-Hill, 2006; (b) Johns,
M. W. Drugs 1975, 9, 448–478; (c) Naguib, F. N. M.; Levesque, D. L.; Wang, E.-C.;
Panzica, P. P.; El Kouni, M. H. Biochem. Pharmacol. 1993, 46, 1273–1278; (d)
Grams, F.; Brandstetter, H.; D’Alo, S.; Gepperd, D.; Krel, H.-W.; Leinert, H.; Livi,
V.; Menta, E.; Oliva, A.; Zimmermann, G. Biol. Chem. 2001, 382, 1277–1285; (e)
Maquoi, E.; Sounni, N. E.; Devy, L.; Oliver, F.; Frankenne, F.; Krell, H.-W.; Grams,
F.; Foidart, J. M.; Noel, A. Clin. Cancer Res. 2004, 10, 4038–4047; (f) Uhlmann, C.;
Froscher, W. CNS Neurosci. Ther. 2009, 15, 24–31.
6. (a) Mokrosz, J. L. Pharmazie 1985, 40, 359–360; (b) Prankerd, R. J.; McKeown, R.
H. Int. J. Pharm. 1992, 83, 39–45; (c) Galati, E. M.; Monforte, M. T.; Miceli, N.;
Raneri, E. Farmaco 2001, 56, 459–461; (d) Singh, P.; Paul, K. J. Heterocycl. Chem.
2006, 43, 607–612; (e) Lomlin, L.; Einsiedel, J.; Heinemann, F. W.; Meyer, K.;
Gmeiner, P. J. Org. Chem. 2008, 73, 3608–3611.
7. (a) Little, R. D.; Dawson, J. R. J. Am. Chem. Soc. 1978, 100, 4607–4609; (b) Little,
R. D.; Dawson, J. R. Tetrahedron Lett. 1980, 21, 2609–2612; For reviews, see: (c)
Verhé, R.; De Kimpe, N. ‘Synthesis and Reactivity of Electrophilic
Cyclopropanes’. In ‘The Chemistry of the Cyclopropyl Group’; Rappoport, Z., Ed.;
Springer: New York, 1987; pp 445–564. Chapter 9; (d) Zwanenburg, B.; De
Kimpe, N.; Methods of Organic Chemistry (Houben-Weyl), Vol. E.17A
(Carbocyclic Three-Membered Ring Compounds), Ed. de Meijere, A.; Thieme
Verlag, Stuttgart, 1997. Chapters 1.1.1 and 1.1.3, pp 29–40 and pp 45–105.; (e)
Caine, D. Tetrahedron 2001, 57, 2643–2684; (f) Lebel, H.; Marcoux, J. F.;
Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 1015–1036.
Thus, a new type of cascade ‘one-pot’ reaction for the direct for-
mation of spirocyclopropanes from benzylidenemalononitriles and
N,N0-dialkylbarbituric acids has been reported. The action of bro-
mine on equimolar amounts of benzylidenemalononitrile and
N,N0-dialkylbarbituric acid in basic ethanol solution results in the
formation
of
substituted
2-aryl-4,6,8-trioxo-5,7-diazaspi-
ro[2.5]octane-1,1-dicarbonitriles in 75–95% yields.
The procedure utilises inexpensive reagents, is easily carried
out and the work up is not complicated. 2-Aryl-4,6,8-trioxo-5,7-
diazaspiro[2.5]octane-1,1-dicarbonitriles crystallized directly from
the reaction mixture, and consequently, the products were isolated
by the filtration and washing with warm water.
The 5,7-diazaspiro[2.5]octane system appears to be of interest
because it incorporates a cyclopropane unit and a hexahydropyr-
imidine-2,4,6-trione heterocyclic ring which are promising with
respect to biological responses.
Acknowledgements
8. Bonavent, G.; Causse, M.; Guittard, M.; Fraisse-Julien, R. Bull. Soc. Chim. Fr. 1964,
2462–2471.
9. For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–136; (b) Padwa, A.
Pure Appl. Chem. 2003, 75, 47–62; (c) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P.
G. Angew. Chem. 2006, 45, 7134–7186.
The authors gratefully acknowledge the financial support of the
Russian Foundation for Basic Research (Project No. 09-03-00003).
10. Elinson, M. N.; Feducovich, S. K.; Stepanov, N. O.; Vereshchagin, A. N.; Nikishin,
References and notes
G. I. Tetrahedron 2008, 64, 708–713.
11. General procedure. To a 10 mL ethanol solution of benzylidenemalononitrile 1
(10 mmol) and barbituric acid 2 (10 mmol) in a 50 ml beaker, 0.82 g (12 mmol) of
sodium ethoxide in 10 mL of ethanol was added over 1 min. Then 10 mmol
1. (a) Thompson, L. A. Curr. Opin. Chem. Biol. 2000, 4, 324–337; (b) Nefzi, A.;
Ostresh, J. M.; Houghten, R. A. Chem. Rev. 1997, 97, 449–472.