_
1906
P. Zak et al. / Journal of Organometallic Chemistry 694 (2009) 1903–1906
4.3. Silylative coupling of trimethylsiloxy-terminated
poly(vinylmethyl)siloxane (5) with styrene
SiHC@CHPh), 7.0–7.4 (m, 4H, Ph); 13C NMR (C6D6, d, ppm): 1.0
(SiMe, terminal), 1.7 (SiMe, internal), 128.3 (@CHSi), 127.0, 128.5,
128.8, 138.5 (Ph), 145.2 (@CHPh); MS: m/z (rel. intensity): 59
(16), 73 (33), 75 (11), 91 (10), 103 (10), 115 (11), 133 (20), 135
(11), 145 (52), 146 (12), 173 (10), 191 (32), 193 (17), 205 (20),
206 (13), 207 (49), 208 (13), 223 (10), 251 (18), 265 (13), 280
(11), 281 (12), 284 (11), 291 (19), 293 (99), 294 (35), 295 (16),
296 (15), 305 (14), 309 (14), 319 (21), 321 (100), 322 (36), 323
(16), 397 (13), 412 (10, M+).
The oven dried 10 mL glass reactor equipped with a condenser
and a magnetic stirring bar was charged under argon with 2 mL
CH2Cl2, trimethylsiloxy-terminated poly(vinylmethyl)siloxane
0.32 mL (3.195 ꢁ 10ꢀ3 mol of vinyl groups) and styrene 1.1 mL
(9.60 ꢁ 10ꢀ3 mol). The reaction mixture was stirred and heated
in an oil bath to maintain a gentle reflux (ca. 45 °C). Then a ruthe-
nium hydride complex ([RuHCl(CO)(PPh3)3] or [RuHCl-
(CO)(PCy3)3]) (3.195 ꢁ 10ꢀ5 mol) and after 5 min CuCl 0.0159 g
(1.598 ꢁ 10ꢀ4 mol) were added under argon. The mixture was stir-
red and heated at 45 °C under an argon flow for a certain time.
Then the solvent was evaporated and conversion was calculated
on the basis of 1H NMR spectrum. The resulting polymeric product
was isolated and purified by liquid chromatography (silica gel,
hexane:CH2Cl2 = 10:1). Spectral data for (6). 1H NMR (C6D6, d,
ppm): 0.2–0.5 (m, SiMe3), 6.8–7.4 (m, H, CH@CH).
Acknowledgements
Financial support from the Ministry of Science and Higher Edu-
cation (Poland), (Project No. PBZ-KBN 118/T09/17) is gratefully
_
acknowledged. P. Zak wishes to acknowledge the grant from the
Operational Programme of Human Resources, Action 8.2., co-fi-
nanced by EU European Social Fund and Polish State.
References
4.4. Silylative coupling of trimethylsiloxy-terminated
poly(dimethylsiloxane-co-methylvinylsiloxane (7) with styrene
[1] (a) T.H. Chan, I. Fleming, Synthesis (1979) 761;
(b) W.P. Weber, Silicon Reagents for Organic Synthesis, Springer, Berlin, 1983
(Chapter 7);
The oven dried 10 mL glass reactor equipped with a condenser
and a magnetic stirring bar was charged under argon with 2 mL
CH2Cl2, trimethylsiloxy-terminated poly(dimethylsiloxane-co-
methylvinylsiloxane) 0.46 mL (2.40 ꢁ 10ꢀ4 mol vinyl group) and
styrene 0.14 mL (1.22 ꢁ 10ꢀ3 mol). The reaction mixture was stir-
red and heated in an oil bath to maintain a gentle reflux (ca.
45 °C). Then ruthenium complex [RuHCl(CO)(PCy3)2] 0.0052 g
(7.16 ꢁ 10ꢀ6 mol) and after 5 min. CuCl 0.0036 g (3.58 ꢁ 10ꢀ5 mol)
were added under argon. The mixture was stirred and heated at
45 °C under argon flow for 18 h. After that time, the solvent was
evaporated and complete conversion was confirmed by 1H NMR
spectroscopy. The resulting polymeric product was isolated and
(c) E.W. Colvin, Silicon Reagents in Organic Synthesis, Academic Press, London,
1988 (Chapter 3);
(d) T.-Y. Luh, S.-T. Liu, in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of
Organosilicon Compounds, Wiley, Chichester, 1998 (Chapter 30).
[2] (a) T. Hiyama, in: F. Diederich, P.J. Stang (Eds.), Metal-Catalyzed Cross-
Coupling Reactions, Wiley-VCH, Weinheim, 1998 (Chapter 10);
(b) S.E. Denmark, R.F. Sweis, in: A. de Meijere, F. Diederich (Eds.), Metal-
Catalyzed Cross-Coupling Reactions;, Wiley-VCH, Weinheim, 2004 (Chapter
4);
(c) S.E. Denmark, M.H. Ober, Aldrichim. Acta 36 (2003) 75–85.
[3] (a) For review see: B. Marciniec, C. Pietraszuk, I. Kownacki, M. Zaidlewicz, in:
Comprehensive Functional Organic Group Transformations II, Elsevier, Oxford,
2005;
(b) K. Oshima, in: I. Fleming (Ed.), Science of Synthesis, vol. 2, Georg Thieme,
Stuttgart, 2002 (Chapter 4.4.34);
(c) B. Marciniec, H. Maciejewski, C. Pietraszuk, P. Pawluc´, in: B. Marciniec
(Ed.), Hydrosilylation, Springer, 2009.
purified
by
liquid
chromatography
(silica
gel,
hex-
ane:CH2Cl2 = 10:1). Isolated yield 80%. Spectral data for (8). 1H
NMR (C6D6, d, ppm): 0.10–0.53 (SiMe), 6.53 (broad d, J = 19.3 Hz,
@CHSi), 7.29 (broad d, J = 19.3 Hz, @CHPh), 7.43–7.45 (m, Ph),
7.06–7.14 (m, Ph); 13C NMR (C6D6, d, ppm): 0.3-2.0 (SiMe), 126.0
(@CHSi), 127.0, 128.7, 128.9, 138.4 (Ph), 146.3 (@CHPh).
[4] [a] B. Marciniec, C. Pietraszuk, Metathesis of Silicon-Containing Olefins, in:
R.H. Grubbs (Ed.), Handbook of Metathesis, Wiley-VCH, Weinheim, 2003
(Chapter 2.13);
(b) B. Marciniec, C. Pietraszuk, Curr. Org. Chem. 7 (2003) 691–743.
[5] Y. Wakatsuki, H. Yamazaki, M. Nakano, Y. Yamamoto, J. Chem. Soc., Chem.
Commun. (1991) 703–704.
[6] (a) B. Marciniec, C. Pietraszuk, J. Chem. Soc., Chem. Commun. (1995) 2003–
2004;
4.5. Silylative coupling of vinyldimethylsiloxy-terminated
polydimethylsiloxane (10) with styrene
(b) B. Marciniec, C. Pietraszuk, Organometallics 16 (1997) 4320–4326.
[7] R.H. Grubbs (Ed.), Handbook of Metathesis, Wiley-VCH, Weinheim, 2003.
[8] (a) C. Pietraszuk, B. Marciniec, H. Fischer, Organometallics 19 (2000) 913–917;
(b) C. Pietraszuk, H. Fischer, M. Kujawa, B. Marciniec, Tetrahedron Lett. 42
(2001) 1175–1178.
[9] C. Pietraszuk, H. Fischer, S. Rogalski, B. Marciniec, J. Organomet. Chem. 690
(2005) 5912–5921.
[10] Y. Itami, B. Marciniec, M. Kubicki, Chem. Eur. J. 10 (2004) 1239–1248.
[11] C. Pietraszuk, B. Marciniec, M. Jankowska, Adv. Synth. Catal. 344 (2002) 789–
793.
The oven dried 10 mL glass reactor equipped with a condenser
and a magnetic stirring bar was charged under argon with 2 mL
CH2Cl2, vinyldimethylsiloxy-terminated polydimethylsiloxane
(10) 0.97 g (1.6 ꢁ 10ꢀ4 mol) and styrene 0.0056 g (4.85 ꢁ 10ꢀ4
mol). The reaction mixture was stirred and heated in an oil bath
to maintain a gentle reflux (ca. 45 °C). Then ruthenium complex
[RuHCl(CO)(PCy3)2] 0.0023 g (3.23 ꢁ 10ꢀ6 mol) was added under
argon. After 5 min CuCl 0.0016 g (1.6 ꢁ 10ꢀ6 mol) was added under
argon. The mixture was stirred and heated at 45 °C under argon
flow for 18 h. Then the solvent was evaporated. The resulting poly-
meric product was isolated and purified by use of chromatography
column (silica gel, hexane:CH2Cl2 = 10:1). Spectral data for (12). 1H
NMR (C6D6, d, ppm): 7.36–7.43 (m, 4H, Ph), 7.06–7.17 (m, 6H, Ph),
7.11 (d, J = 19.2 Hz, 2H, @CHPh), 6.53 (d, J = 19.2 Hz, 2H, @CHSi),
0.12–0.55 (SiMe); 13C NMR (C6D6, d, ppm): 145.2 (@CHPh), 127.0
(@CSi), 128.2, 128.5, 128.8 (Ph), 0.9, 1.4, 1.5, 1.9 (SiMe). An analo-
gous procedure was used for silylative coupling of 1,5-divin-
yltetramethyltrisiloxane (9) with styrene. Spectral data for (11).
1H NMR (C6D6, d, ppm): 0.26 (s, 6H, SiMe2), 0.35 (s, 12H, SiMe2),
6.55 (d, J = 18.9, 2H, SiHC@CHPh), 7.15 (d, J = 18.9, 2H,
[12] E. Małecka, B. Marciniec, C. Pietraszuk, A.C. Church, K. Wagener, J. Mol. Catal.
A: Chem. 190 (2002) 27–31.
[13] B. Marciniec, M. Majchrzak, J. Organomet. Chem. 686 (2003) 228–234.
[14] C. Pietraszuk, S. Rogalski, M. Majchrzak, B. Marciniec, J. Organomet. Chem. 691
(2006) 5476–5481.
_
[15] P. Zak, C. Pietraszuk, B. Marciniec, J. Mol. Catal. A: Chem. 285 (2008) 1–8.
[16] B. Marciniec, C. Pietraszuk, M. Kujawa, J. Mol. Catal. A: Chem. 133 (1998) 41–
49.
[17] Y. Itami, B. Marciniec, M. Kubicki, Organometallics 22 (2003) 3717–3722.
[18] B. Marciniec, J. Waehner, P. Pawluc´, M. Kubicki, J. Mol, Catal. A: Chem. 265
(2007) 25–31.
[19] J. Waehner, B. Marciniec, P. Pawluc´, Eur. J. Inorg. Chem. (2007) 2975–2980.
´
[20] T. Ganicz, A. Kowalewska, W.A. Stanczyk, M. Butts, S.A. Nye, S. Rubinsztajn, J.
Mater. Chem. 15 (2005) 611–619.
[21] Patent PL 195453.
[22] E.L. Dias, S.T. Nguyen, R.H. Grubbs, J. Am. Chem. Soc. 119 (1997) 3887–3897.
[23] N. Ahmed, J.J. Levison, S.D. Robinson, M.F. Uttley, Inorg. Synth. 15 (1974) 45–
64.
[24] C.S. Yi, D.W. Lee, Y. Chen, Organometallics 18 (1999) 2043–2045.