4336
N. Suzumura et al. / Tetrahedron Letters 53 (2012) 4332–4336
Tsuru, I.; Kohomoto, S.; Yamamoto, M.; Yamada, K. Chem. Lett. 1994, 1605; (c)
5
8
4
3
4a
8a
Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.; Shiro, M. J. Org. Chem.
1998, 63, 2634; (d) Hughes, A. D.; Price, D. A.; Simpkins, N. S. J. Chem. Soc.,
Perkin Trans. 1 1999, 1295; (e) Bach, T.; Schröder, J.; Harms, K. Tetrahedron Lett.
1999, 40, 9003; (f) Curran, D. P.; Geib, S.; Demello, N. Tetrahedron 1999, 55,
5681; (g) Kondo, K.; Iida, T.; Fujita, H.; Suzuki, T.; Yamaguchi, K.; Murakami, Y.
Tetrahedron 2000, 56, 8883; (h) Dantale, S.; Reboul, V.; Metzner, P.; Philouze, C.
Chem. Eur. J. 2002, 8, 632; (i) Bennett, D. J.; Blake, A. J.; Cooke, P. A.; Godfrey, R.
A.; Pickering, P. L.; Simpkins, N. S.; Walker, M. D.; Wilson, C. Tetrahedron 2004,
60, 4491.
6
7
NH
2
1
N
O
t-Bu
1'
6'
5'
2'
3'
t-Bu
4'
TS-2b
3. In addition to III–VI, other stable N–C axially chiral aromatic heterocycles
(quinolin-2-one and pyridin-2-one) having an N-(ortho-methyl)phenyl group
have also been reported. (a) Mintas, M.; Mihaljevic, V.; Koller, H.; Schuster, D.;
Mannschreck, A. J. Chem. Perkin Trans. 2 1990, 619; (b) Sakamoto, M.; Utsumi,
N.; Ando, M.; Seki, M.; Mino, T.; Fujita, T.; Katoh, A.; Nishino, T.; Kashima, C.
Angew. Chem., Int. Ed. 2003, 42, 4360; (c) Tanaka, K.; Takahashi, Y.; Suda, T.;
Hirano, M. Synlett 2008, 1724. See also Ref. 1l..
4. In the course of study on atropisomeric lactams, we previously reported that
the ring size of lactam considerably influences the stability of the
atropisomerism. That is, a six-membered ring lactam possessing larger bond
angle (<CO-N-C = 124.1°) was found to have a higher rotational barrier than a
5
8
4
3
4a
6
7
N
2
1
8a
6'
N
O
t-Bu
1'
2'
3'
5'
t-Bu
4'
five-membered ring lactam possessing
a smaller bond angle (<CO-N-
C = 112.1°). However,
between imide IIB
a
remarkable difference of the rotational barrier
1m,2b,f
and thiazol-2-one V1d having a five-membered ring
TS-3b
structure cannot be rationalized on the basis of such bond angle. Kitagawa, O.;
Fujita, M.; Kohriyama, M.; Hasegawa, H.; Taguchi, T. Tetrahedron Lett. 2000, 41,
8539.
Figure 5. The transition state structures TS-2b and TS-3b during N–Ar bond
rotation of 2b and 3b on the basis of DFT calculation.
5. Reviews on medicinal drugs having atropisomeric structure (a) Clayden, J.;
Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem., Int. Ed. 2009, 48, 6398;
(b) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.;
Kemper, R.; Miller, S. P. F.; Edwards, P. J. J. Med. Chem. 2011, 54, 7005.
6. (a) Kitagawa, O.; Hirotaka, H.; Dobashi, A.; Taguchi, T.; Shiro, M. Tetrahedron
Lett. 1997, 38, 4447; (b) Kitagawa, O.; Taguchi, T. Yuki Gosei Kagaku Kyokaishi
2001, 59, 680; (c) Takahashi, M.; Kitagawa, O. Yuki Gosei Kagaku Kyokaishi 2011,
69, 985; (d) Ototake, N.; Morimoto, Y.; Mokuya, A.; Fukaya, H.; Shida, Y.;
Kitagawa, O. Chem. Eur. J. 2010, 16, 6752. and references cited therein.
7. (a) Kitagawa, O.; Takahashi, M.; Yoshikawa, M.; Taguchi, T. J. Am. Chem. Soc.
2005, 127, 3676; (b) Kitagawa, O.; Yoshikawa, M.; Tanabe, H.; Morita, T.;
Takahashi, M.; Dobashi, Y.; Taguchi, T. J. Am. Chem. Soc. 2006, 128, 12923.
8. Catalytic enantioselective synthesis of N-C axially chiral compounds by other
groups (a) Brandes, S.; Bella, M.; Kjoersgaard, A.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2006, 45, 1147; (b) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc.
2006, 128, 4586; (c) Duan, W.; Imazaki, Y.; Shintani, R.; Hayashi, T. Tetrahedron
2007, 63, 8529; (d) Oppenheimer, J.; Hsung, R. P.; Figueroa, R.; Johnson, W. L.
Org. Lett. 2007, 9, 3969; (e) Clayden, J.; Turner, H. Tetrahedron Lett. 2009, 50,
3216; (f) Onodera, G.; Suto, M.; Takeuchi, R. J. Org. Chem. 2012, 77, 908; (g)
Shirakawa, S.; Liu, K.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 916.
9. The rate constants for the racemization of 2a were measured at three different
temperatures (96.0 °C, 103.1 °C, and 109.5 °C) in toluene. These data were
subjected to an Eyring plot to determine the rotational barrier (see
Supplementary data).
10. DFT calculations at the level of B3LYP1/6-31G(d) were performed by Firefly (PC
GAMESS) quantum chemical package (version 7.1.G, Alex A. Granovsky, Firefly
structures were fully optimized and then subjected to the frequency
analysis. For the ground state, the absence of the imaginary frequency was
confirmed in every case. Transition states relevant to the rotational barrier
were identified by the following two criteria: (1) The frequency analysis gave
only one imaginary frequency. (2) The exhaustive IRC calculations provided
one pair of enantiomeric atropisomers. Schmidt, M. W.; Baldridge, K. K.; Boatz,
J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen,
K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.; J. Comput. Chem.
1993, 14, 1347.
state structure during the N–Ar bond rotation based on DFT calcu-
lation, the origin of increase in the rotational barrier of aromatic
compounds was strongly suggested to be due to the significant
twisting of the nitrogen-containing heterocyclic part. This result
indicates that in aromatic heterocycles possessing an ortho-substi-
tuted phenyl group on the nitrogen atom, there is a high possibility
of having stable axial chirality. In addition, this knowledge is
important from the viewpoint of not only N–C axially chiral chem-
istry but also medicinal chemistry, because aromatic heterocycles
possessing an N-(ortho-substituted)phenyl group frequently have
strong pharmacological activity.
Acknowledgments
This work was partly supported by a Grant-in-Aid (C22590015)
for Scientific Research and the Ministry of Education, Science,
Sports, and Culture of Japan.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
11. The rate constants for the racemization of 2b were measured at four different
temperatures (74.4 °C, 82.2 °C, 88.8 °C, and 98.5 °C) in toluene. These data were
subjected to an Eyring plot to determine the rotational barrier (see
Supplementary data).
1. Typical examples of atropisomeric compounds having an N–C chiral axis: (a)
Bock, L. H.; Adams, R. J. Am. Chem. Soc. 1931, 53, 374; (b) Kashima, C.; Katoh, A.
J. Chem. Soc., Perkin Trans. 1 1980, 1599; (c) Mannschreck, A.; Koller, H.; Stühler,
G.; Davis, M. A.; Traber, J. Eur. J. Med. Chem. Chim. Ther. 1984, 19, 381; (d)
Roussel, C.; Adjimi, M.; Chemlal, A.; Djafri, A. J. Org. Chem. 1988, 53, 5076; (e)
Kawamoto, T.; Tomishima, M.; Yoneda, F.; Hayami, J. Tetrahedron Lett. 1992, 33,
3169; (f) Dai, X.; Wong, A.; Virgil, S. C. J. Org. Chem. 1998, 63, 2597; (g) Curran,
D. P.; Liu, W.; Chen, C. H. J. Am. Chem. Soc. 1999, 121, 11012; (h) Hata, T.; Koide,
H.; Taniguchi, N.; Uemura, M. Org. Lett. 2000, 2, 1907; (i) Shimizu, K. D.; Freyer,
H. O.; Adams, R. D. Tetrahedron Lett. 2000, 41, 5431; (j) Tetrahedron
Symposium-in-print on Axially Chiral Amides (Atropisomerism), J. Clayden,
(Ed.), Tetrahedron, 2004, 60, 4325–4558.; (k) Tokitoh, T.; Kobayashi, T.; Nakada,
E.; Inoue, T.; Yokoshima, S.; Takahashi, H.; Natsugari, H. Heterocycles 2006, 70,
93; (l) Kamikawa, K.; Kinoshita, S.; Furusyo, M.; Takemoto, S.; Matsuzaka, H.;
Uemura, M. J. Org. Chem. 2007, 72, 3394; (m) Yilmaz, E. M.; Dogan, I.
Tetrahedron Asymmetry 2008, 19, 2184.
12. The crystal structure of 2a-Me; see Supplementary data in Ref. 7a.
13. CCDC-866228 (3a) contains the supplementary crystallographic data for this
Letter. These data can be obtained free of charge from The Cambridge
14. Ab initio studies of axially chiral quinazolin-4-one derivatives such as III
(Fig. 1) have been reported by Sapse and co-workers. The transition state
structures during the N–Ar bond rotation estimated by an ab initio calculation
with a HF/6-31G⁄ basis set are similar to those shown in Figures 3–5. That is,
the considerable distortion of the amide part and an increase in the bond
length (C2-N1, N1-C8a) and bond angle (<C2-N1-C10) were found. However,
there has been no previous mention of the relationship between the aromatic
structure and the rotational barrier. Azanli, E.; Rothchild, R.; Sapse, A-M.
Spectrosc. Lett. 2002, 35, 257.
2. Typical papers on atropisomeric ortho-tert-butylanilides: (a) Curran, D. P.; Qi,
H.; Geib, S. J.; DeMello, N. C. J. Am. Chem. Soc. 1994, 116, 3131; (b) Kishikawa, K.;