Bis(imino)pyridine Cobalt Dinitrogen Complexes
A R T I C L E S
Scheme 1
Seminal electrochemical studies by Toma on bis(chelate)
complexes of bis(imino)pyridine iron established the participa-
tion of these ligands in the electronic structures of reduced metal
complexes.15,16 In preparative scale chemistry, Wieghardt and
co-workers synthesized bis(imino)pyridine bis(chelate) com-
plexes of a series of first-row ions and demonstrated that redox
processes occur at the ligand rather than the metal.17,18 These
studies also established many of the metrical and spectroscopic
features that signal chelate participation. It is likely that the
ability of the bis(imino)pyridine ligands to smoothly adjust to
the electronic demands of the metal center is the reason why
these ligands enable such a broad and rich catalytic chemistry.19
reagents,7 Grignard reagents,23,24 or zinc metal23 resulted in one-
electron reduction to yield the square planar, diamagnetic cobalt
monochloride (iPrPDI)CoCl. Subsequent alkylation of this spe-
cies furnished a family of the desired cobalt alkyls (iPrPDI)CoR
25,26
n
n
(R ) Me, Et, Pr, Bu) (Scheme 1).
Analogous cobalt
chloride and alkyl compounds with the phenylated bis(imi-
no)pyridines, (ArBPDI)CoCl and (ArBPDI)CoR, have also been
reported.27
Computational studies by Budzelaar and co-workers28 estab-
lished that diamagnetic (ArPDI)CoCl, (ArPDI)CoR, and
(R′PDI)CoR are best described as low-spin Co(II) complexes
(SCo ) 1/2) antiferromagnetically coupled to a bis(imino)pyri-
dine radical anion (SPDI ) 1/2). In many cases, low-lying triplet
states were found to be only a few kilocalories per mole higher
in energy than the ground states. This view of the electronic
structure has been corroborated by the observation of bis(imi-
no)pyridine chelate distortions in the solid-state structures as
well as the unusual upfield chemical shifts of the in-plane imine
methyl groups observed by solution NMR spectroscopy.7,23,29
While bis(imino)pyridine cobalt chloride and alkyl com-
pounds with one-electron-reduced chelates have been synthe-
sized and well-studied, formal two- and three-electron reduction
products of (ArPDI)CoCl2 and (iPrBPDI)CoCl2 have not been
prepared or characterized. In addition to their potential role in
catalysis, these complexes were of interest to determine the
degree of chelate participation in the electronic structure and
further explore the fundamental concept of redox-active ligands
in base metal complexes relevant to catalysis. In addition, these
synthetic targets, as in iron chemistry, may also be useful
platforms to assemble reactive cobalt-ligand multiple bonds.30-36
In this paper, we report the results of a combined experimental
Irreversible carbon-oxygen bond cleavage has been identified
as a significant catalyst deactivation pathway in alkene hydro-
genation and [2π + 2π] cycloisomerization reactions promoted
by (iPrPDI)Fe(N2)2.20 Because of this limitation and for com-
parison to established bis(imino)pyridine iron catalysts, we
sought to prepare analogous reduced bis(imino)pyridine cobalt
dinitrogen compounds. In addition to answering questions
relevant to electronic structure, catalytically active cobalt
compounds are also of interest because they offer many of the
same cost and environmental advantages of iron.
Bis(imino)pyridine cobalt complexes date to Busch’s21 and
Sacconi’s22 initial reports of the synthesis and spectroscopic
characterization of a variety of halide, nitrate, and thiocyanate
derivatives. These classical, Werner-type coordination com-
pounds have received renewed interest following Brookhart’s
and Gibson’s independent discoveries of highly active olefin
polymerization catalysts.4,5 To date, investigations into reduced
bis(imino)pyridine cobalt chemistry have been motivated by
elucidating the identity of the propagating species during olefin
polymerization. Treatment of (iPrPDI)CoCl2 with alkyllithium
(23) Gibson, V. C.; Humphries, M. J.; Tellmann, K. P.; Wass, D. F.; White,
A. J. P.; Williams, D. J. Chem. Commun. 2001, 2252.
(24) Steffen, W.; Blo¨mker, T.; Kleigrewe, N.; Kehr, G.; Fro¨hlich, R.; Erker,
G. Chem. Commun. 2004, 1188.
(12) (a) Knijnenburg, Q.; Gambarotta, S.; Budzelaar, P. H. M. Dalton Trans.
2006, 5442. (b) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.;
Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem.
Soc. 2006, 128, 13901.
(25) Gibson, V. C.; Tellmann, K. P.; Humphries, M. J.; Wass, D. F. Chem.
Commun. 2002, 2316.
(26) Tellmann, K. P.; Humphries, M. J.; Rzepa, H. S.; Gibson, V. C.
Organometallics 2004, 23, 5503.
(13) Butin, K. P.; Beloglazkina, E. K.; Zyk, N. V. Russ. Chem. ReV. 2005,
74, 531.
(27) Kleigrewe, N.; Steffen, W.; Blo¨mker, T.; Kehr, Fro¨hlich, R.; Wib-
beling, B.; Erker, G.; Wasilke, J.-C.; Wu, G.; Bazan, G. C. J. Am.
Chem. Soc. 2005, 127, 13955.
(14) Chaudhuri, P.; Wieghardt, K. Prog. Inorg. Chem. 2001, 50, 151.
(15) Kuwabara, I. H.; Comninos, F. C. M.; Pardini, V. L.; Viertler, H.;
Toma, H. E. Electrochim. Acta 1994, 39, 2401.
(28) Knijnenburg, Q.; Hetterscheid, D.; Kooistra, T. M.; Budzelaar, P. H. M.
Eur. J. Inorg. Chem. 2004, 1204.
(16) Toma, H. E.; Chavez-Gil, T. E. Inorg. Chim. Acta 1997, 257, 197.
(17) de Bruin, B.; Bill, E.; Bothe, E.; Weyhermu¨ller, T.; Wieghardt, K.
Inorg. Chem. 2000, 39, 2936.
(29) Humphries, M. J.; Tellmann, K. P.; Gibson, V. C.; White, A. J. P.;
Williams, D. J. Organometallics 2005, 24, 2039.
(18) Budzelaar, P. H. M.; de Bruin, B.; Gal, A. W.; Wieghardt, K.; van
Lenthe, J. H. Inorg. Chem. 2001, 40, 4649.
(30) Shay, D. T.; Yap, G. P. A.; Zakharov, L. N.; Rheingold, A. L.;
Theopold, K. H. Angew. Chem., Int. Ed. 2005, 44, 1508.
(31) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002,
124, 11238.
(19) For representative examples of this concept in stoichiometric and
catalytic reactions in early-transition-metal chemistry, see: (a) Zarkesh,
R. A.; Ziller, J. W.; Heyduk, A. F. Angew. Chem., Int. Ed. 2008, 47,
4715. (b) Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduk, A. F. J. Am.
Chem. Soc. 2008, 130, 2728. (c) Stanciu, C.; Jones, M. E.; Fanwick,
P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 12400.
(20) Trovitch, R. J.; Lobkovsky, E.; Bouwkamp, M. W.; Chirik, P. J.
Organometallics 2008, 27, 6264.
(32) Chomitz, W. A.; Arnold, J. Chem. Commun. 2008, 3648.
(33) Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y. H.;
Wang, H. B.; Smith, J. M. J. Am. Chem. Soc. 2007, 129, 2424.
(34) Hu, X. L.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322.
(35) Dai, X. L.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126,
4798.
(21) Figgins, P. E.; Busch, D. H. J. Am. Chem. Soc. 1960, 82, 820.
(22) Sacconi, L.; Morassi, R.; Midollini, S. J. Chem. Soc. A 1968, 1510.
(36) Thyagarajan, S.; Shay, D. T.; Incarvito, C. D.; Rheingold, A. L.;
Theopold, K. H. J. Am. Chem. Soc. 2003, 125, 4440.
9
J. AM. CHEM. SOC. VOL. 132, NO. 5, 2010 1677