Scheme 3. Mechanisms of Au(I)-Catalyzed Intramolecular Addition/Ring-Opening of VDCPs
aromatic rings of Ar1 and Ar2 also afforded the corresponding
tetrahydropyran derivatives 3h and 3j in moderate to good
yields, but in the case of 2i bearing a strong electron-donating
group (MeO) on Ar1 and Ar2 rings, products of complex
mixtures were formed (Table 2, entries 7-9). For unsym-
metrical diarylvinylidenecyclopropane 2k, the corresponding
tetrahydropyran derivative 3k was obtained as a pair of
diastereoisomers with the ratio of 1:1 (Table 2, entry 10).
Obviously, the present gold-catalyzed reaction should be
further imporved in future so as to minimize the formation
of unidentified byproducts (see the Supporting Information).
A mechanism hypothesis was proposed as shown in
Scheme 3. At the beginning, Au(I) complex is oxidized to
L-Au+ species by cocatalyst AgOTf prior to attacking
starting material 2. The addition/ring-opening can occur
through two possible pathways: gold cation works as a Lewis
acid to activate the allene functionality, affording intermedi-
ate A (path 1);5 Au(I) catalyzes the ring-opening via
formation of cationic intermediate B (path 2). The intramo-
lecular nucleophilic addition by the hydroxyl group onto
electrophilic carbon centers in intermediate A or B gives the
same intermediate C, which produces the corresponding
tetrahydropyran derivative 3 followed by protonation along
with the regeneration of Au(I) catalytic species for the
catalytic cycles.
Table 2. [(Ph3PAu)3O]BF4/AgOTf Co-Catalyzed Intramolecular
Addition/Ring-Opening
time
entrya
Ar1/Ar2/Ar3
C6H5/C6H5/C6H4, 2b
C6H5/C6H5/p-CH3C6H4, 2b
C6H5/C6H5/p-CH3OC6H4, 2c
C6H5/C6H5/p-FC6H4, 2d
C6H5/C6H5/p-CIC6H4, 2e
C6H5/C6H5/p-BrC6H4, 2f
C6H5/C6H5/m-BrC6H4, 2g
p-CH3C6H4/p-CH3C6H4/C6H5, 2h
(min) yield (%)b
3
1
2
3
4
5
6
7
8
10
30
30
10
15
15
30
15
3a, 59
3b, 62
3c, 69
3d, 56
3e, 45
3f, 55
3g, 60
3h, 55
complex
products
3j, 60
9
10
11
p-CH3OC6H4/p-CH3OC6H4/C6H5, 2i
p-CIC6H4/p-CIC6H4/C6H5, 2j
p-CIC6H4/C6H5/C6H5, 2k
10
20
20
3k, 45c
a Reaction conditions: VDCP 2 (0.1 mmol) and [(Ph3PAu)3O]BF4 (4
mol %), AgOTf (4 mol %) were dissolved in 1,4-dioxane (3.0 mL), and
then the mixtures were stirred for different time at 60 °C. b Isolated yield.
c 3k was obtained as a pair of diastereoisomer (1:1). d It could not be cleanly
isolated from some other compounds by column chromatography.
In conclusion, a new intramolecular tandem addition/ring-
opening of diarylvinylidenecyclopropanes (VDCPs) has been
clopropanes 2b-2g that bear both electron-withdrawing and
electron-donating groups on their rings of Ar3. The corre-
sponding tetrahydropyran derivatives 3b-3g were generated
in moderate to good yields (Table 2, entries 1-6). Similarly,
introducing moderate electron-donating or electron-with-
drawing groups (Me and Cl for 2h and 2i, respectively) onto
(6) (a) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.;
Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182. (b) Skouta, R.; Li, C.-J. Angew.
Chem., Int. Ed. 2007, 46, 1117–1119. (c) Zhou, C.-Y.; Che, C.-M. J. Am.
Chem. Soc. 2007, 129, 5828–5829.
(7) (a) Bauer, J. T.; Hadfield, M. S.; Lee, A.-L. Chem. Commun. 2008,
6405–6407. (b) Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006,
45, 6704–6707. (c) Shi, M.; Liu, L.-P.; Tang, J. Org. Lett. 2006, 8, 4043–
4046.
(8) (a) Maeda, H.; Mizuno, K. J. Synth. Org. Chem. Japan 2004, 62,
1014–1025. (b) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J. Am. Chem.
Soc. 2005, 127, 14552–14553. (c) Li, W.; Shi, M. J. Org. Chem. 2008, 73,
4151–4154.
(4) (a) Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem., Int. Ed.
2009, 48, 3112–3115. (b) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8,
4907–4910. (c) Liu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett.
2005, 7, 5409–5412. (d) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour,
C.; Genet, J.-P.; Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112–3113.
(e) Robles-Machin, R.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2006, 71,
5023–5026. (f) Kang, J.-E.; Kim, H.-B.; Lee, J.-W.; Shin, S. Org. Lett.
2006, 8, 3537–3540. (g) Li, W.; Yuan, W.; Shi, M.; Hernandez, E.; Li, G.
Org. Lett. 2010, 12, 64–67.
(9) Mizuno, K.; Sugita, H.; Kamada, T.; Otsuji, Y. Chem. Lett. 1994,
449–452.
(10) Sugita, H.; Mizuno, K.; Mori, T.; Isagawa, K.; Otsuji, Y. Angew.
Chem., Int. Ed. 1991, 30, 984–986.
(11) Morrill, T. C.; D’Souza, C. A.; Yang, L.; Sampognaro, A. J. J.
Org. Chem. 2002, 67, 2481–2484, and the references therein. As for the
detailed experimental procedures, please see the Supporting Information.
(12) (a) Nesmeyanov, A. N.; Perevalova, E. G.; Struchkov, Y. T.;
Antipin, M. Y.; Grandberg, K. I.; Dyadchenko, V. P. J. Organomet. Chem.
1980, 201, 343–349. (b) Yang, Y.; Ramamoorthy, V.; Sharp, P. R. Inorg.
Chem. 1993, 32, 1946–1950.
(5) (a) Hyland, C. T.; Hegedus, L. S. J. Org. Chem. 2006, 71, 8658–
8660. (b) Morita, N.; Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897–
1899. (c) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc.
2005, 127, 10500–10501. (d) Nishina, N.; Yamamoto, Y. Angew. Chem.,
Int. Ed. 2006, 45, 3314–3317.
922
Org. Lett., Vol. 12, No. 5, 2010