3354
Y. Watanabe, T. Yamazaki
LETTER
chromatography (hexane–EtOAc, 20:1) to afford 3a (0.14 g,
0.51 mmol, 85%) as a pale yellow oil. Rf = 0.79 (CH2Cl2–
EtOAc, 1:1). 1H NMR (300 MHz, CDCl3): d = 6.71 (q,
J = 2.7 Hz, 1 H), 7.34–7.44 (m, 5 H). 13C NMR (75.5 MHz,
CDCl3): d = 82.5 (q, J = 45.3 Hz), 106.8, 119.8 (q, J = 271.7
representative example was conveniently transformed
into the carbonyl adducts 7a and 7b in excellent yield.
Further studies on expanding the scope of the substrates
are in progress.
Hz), 128.5, 129.2, 129.4, 129.9, 202.6 (q, J = 3.1 Hz). 19
F
NMR (283 MHz, CDCl3): d = –65.66 (s). IR (neat): 613, 653,
690, 720, 749, 819, 847, 897, 918, 951, 1003, 1029, 1045,
1075, 1119, 1267, 1293, 1313, 1397, 1459, 1496, 1597,
1736, 3034, 3066 cm–1. HRMS–FAB: m/z calcd for
C10H7F3Br [M + H]+: 262.9683; found: 262.9668.
(9) Procedure for the Preparation of the Allenylcarbinols 7a
and 7b
Acknowledgment
The authors are grateful to Tosoh F–Tech, Inc. for the generous gift
of 2-bromo-3,3,3-trifluoropropene.
References and Notes
To a solution of 3a (0.32 g, 1.20 mmol) and isobutyr-
aldehyde (142 mL, 1.6 mmol) in Et2O (5 mL) was added
BuLi (0.98 mL, 1.6 mmol, 1.6 M in hexane) at –105 °C. The
solution was stirred at that temperature for 2 h. The reaction
mixture was quenched with 1 M aq HCl solution (3 mL) and
extracted with EtOAc (3 × 20 mL). Usual workup and
purification by silica gel chromatography (hexane–EtOAc,
12:1) afforded 7a (0.087 g, 0.41 mol 34%) and 7b (0.14 g,
0.66 mmol 55%).
Compound 7a: colorless oil. Rf = 0.56 (hexane–EtOAc, 4:1).
1H NMR (300 MHz, CDCl3): d = 1.01 (d, J = 6.9 Hz, 6 H),
1.80 (br s, 1 H), 1.96 (oct, J = 6.6 Hz, 1 H), 4.12 (dd, J = 6.6,
1.5 Hz, 1 H), 6.73 (qd, J = 3.3, 1.5 Hz, 1 H), 7.26–7.38 (m,
5 H). 13C NMR (75.5 MHz, CDCl3): d = 17.0, 19.5, 32.7,
73.8, 103.0, 106.0 (q, J = 32.3 Hz), 123.1 (q, J = 274.1 Hz),
127.4, 128.6, 129.0, 131.1, 204.4 (q, J = 4.4 Hz). 19F NMR
(283 MHz, CDCl3): d = –62.44 (s). IR (neat): 692, 721, 747,
828, 920, 1001, 1029, 1074, 1127, 1210, 1273, 1369, 1387,
1411, 1462, 2874, 2934, 2963, 3429 cm–1. HRMS–FAB:
m/z calcd for C14H16OF3 [M + H]+: 257.1153; found:
257.1176.
Compound 7b: colorless oil. Rf = 0.47 (hexane–EtOAc,
4:1). 1H NMR (300 MHz, CDCl3): d = 1.00 (d, J = 6.6 Hz,
3 H), 1.01 (d, J = 6.6 Hz, 3 H), 1.88 (br s, 1 H), 1.96 (oct,
J = 6.6 Hz, 1 H), 4.12 (dd, J = 6.6, 1.2 Hz, 1 H), 6.78 (qd,
J = 3.3, 1.5 Hz, 1 H), 7.27–7.39 (m, 5 H). 13C NMR (75.5
MHz, CDCl3): d = 17.1, 19.6, 32.8, 73.6, 103.2, 106.1 (q,
J = 32.2 Hz), 123.2 (q, J = 272.9 Hz), 127.6, 128.6, 129.0,
131.1, 204.1 (q, J = 4.3 Hz). 19F NMR (283 MHz, CDCl3):
d = –62.52 (s). IR (neat): 692, 719, 747, 829, 920, 1000,
1029, 1074, 1123, 1210, 1274, 1369, 1388, 1411, 1462,
1715, 1961, 2876, 2933, 2967, 3036, 3410 cm–1. HRMS–
FAB: m/z calcd for C14H16OF3 [M + H]+: 257.1153; found:
257.1187.
(1) (a) Kitazume, T.; Yamazaki, T. Experimental Methods in
Organic Fluorine Chemistry; Kodansha Scientific: Tokyo,
1998. (b) Hiyama, T. Organofluorine Compounds:
Chemistry and Applications; Springer: Berlin, 2000.
(c) Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005,
44, 214. (d) Uneyama, K. Organofluorine Chemistry;
Blackwell: Oxford, 2006.
(2) (a) Yamazaki, T.; Yamamoto, T.; Ichihara, R. J. Org. Chem.
2006, 71, 6251. Other examples of trifluoromethyl-
substituted allenes: (b) Shimizu, M.; Higashi, M.; Takeda,
Y.; Jiang, G.; Murai, M.; Hiyama, T. Synlett 2007, 1163.
(c) Bosbury, P. W. L.; Fields, R.; Haszeldine, R. N.; Moran,
D. J. Chem. Soc., Perkin Trans. 1 1976, 1173. (d) Bosbury,
P. W. L.; Fields, R.; Haszeldine, R. N. J. Chem. Soc., Perkin
Trans. 1 1978, 422. (e) Hanzawa, Y.; Kawagoe, K.-i.;
Yamada, A.; Kobayashi, Y. Tetrahedron Lett. 1985, 26,
219. (f) Burton, D. J.; Hartgraves, G. A.; Hsu, J. Tetrahedron
Lett. 1990, 31, 3699. (g) Konno, T.; Tanikawa, M.; Ishihara,
T.; Yamanaka, H. Chem. Lett. 2000, 1360. (h) Han, H. Y.;
Kim, M. S.; Son, J. B.; Jeong, I. H. Tetrahedron Lett. 2006,
47, 209. Examples of fluorine-substituted allenes:
(i) Dolbier, W. R. Jr.; Burkholder, C. R.; Piedrahita, C. A.
J. Fluorine Chem. 1982, 20, 637. (j) Mae, M.; Hong, J. A.;
Xu, B.; Hammond, G. B. Org. Lett. 2006, 8, 479.
(k) Yokota, M.; Fuchibe, K.; Ueda, M.; Mayumi, Y.;
Ichikawa, J. Org. Lett. 2009, 11, 3994.
(3) For recent reviews, see: (a) Brummond, K. M.; DeForrest,
J. E. Synthesis 2007, 795. (b) Ma, S. Aldrichimica Acta
2007, 40, 91. (c) Modern Allene Chemistry, Vol. 1 and 2;
Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim,
2004. (d) Hoffmann-Röder, A.; Krause, N. Angew. Chem.
Int. Ed. 2004, 43, 1196.
(4) (a) Kinnel, R.; Duggan, A. J.; Eisner, T.; Meinwald, J.
Tetrahedron Lett. 1977, 3913. Recent studies on
bromoallenes: (b) Tang, Y.; Shen, L.; Dellaria, B. J.; Hsung,
R. P. Tetrahedron Lett. 2008, 49, 6404. (c) Braddock, D.
C.; Bhuva, R.; Pérez-Fuertes, Y.; Pouwer, R.; Robers, C. A.;
Ruggiero, A.; Stokes, E. S. E.; White, A. J. P. Chem.
Commun. 2008, 1419.
(10) Procedure for the Preparation of the 2,5-Dihydrofuran
8a
To a solution of 7a (0.087 g, 0.41 mmol) in acetone (3 mL)
was added AgNO3 (12 mg, 0.082 mmol) at r.t. The solution
was protected from light and stirred at that temperature for 4
d. Concentration by rotary evaporator furnished a crude
mixture that was purified by silica gel chromatography
(hexane–EtOAc, 20:1) to afford 8a (0.066 g, 75%) as a pale
yellow oil; Rf = 0.77 (hexane–EtOAc, 4:1). 1H NMR (300
MHz, CDCl3): d = 0.94 (d, J = 6.9 Hz, 3 H), 1.13 (d, J = 6.9
Hz, 3 H), 2.03 (septd, J = 6.6, 1.2 Hz, 1 H), 5.18 (dq, J = 6.6,
0.9 Hz, 1 H), 5.83–5.88 (m, 1 H), 6.45 (sext, J = 1.8 Hz, 1
H), 7.26–7.44 (m, 5 H). 13C NMR (75.5 MHz, CDCl3): d =
14.5, 19.9, 32.0, 87.7 (q, J = 0.6 Hz), 89.3 (q, J = 0.6 Hz),
121.7 (q, J = 269.2 Hz), 126.4, 128.4, 128.7, 131.9 (q,
J = 33.5 Hz), 135.8 (q, J = 4.4 Hz), 140.0. 19F NMR (283
MHz, CDCl3): d = –64.13 (s). IR (neat): 698, 726, 760, 879,
917, 1009, 1051, 1068, 1126, 1158, 1242, 1265, 1281, 1334,
1360, 2876, 2935, 2970 cm–1. HRMS–FAB: m/z calcd for
C14H16OF3 [M]+: 256.1075; found: 256.1046.
(5) Transformation of a-arylpropargylic alcohols into
bromoallenes by treatment with CBr4 and Ph3P has recently
been reported, see: Sakai, N.; Maruyama, T.; Konakahara, T.
Synlett 2009, 2105.
(6) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801.
(7) Marshall, J. A.; Yu, R. H.; Perkins, J. F. J. Org. Chem. 1995,
60, 5550.
(8) Typical Procedure for the Preparation of the
Bromoallene 3a
To a solution of 1a (0.12 g, 0.60 mmol) and Ph3P (0.38 g, 1.4
mmol) in DMF (2.0 mL) was added CBr4 (0.24 g, 0.72
mmol) at r.t. The solution was stirred at that temperature for
2 h. The reaction mixture was quenched with H2O (20 mL)
and extracted with hexane–EtOAc (1:1, 3 × 15 mL).
Concentration by rotary evaporator after dried over Na2SO4
furnished a crude mixture that was purified by silica gel
Synlett 2009, No. 20, 3352–3354 © Thieme Stuttgart · New York