M. A. Wallace et al.
with water (20 mL) and extracted with ethyl acetate (3 Â 10 mL). products can be achieved with 2 equivalents of 7, as opposed to
The organic phase was dried and concentrated and the resulting 3 equivalents needed with reagent 1. Lastly, although 5 may
oil was dissolved in xylenes (2 mL) and the mixture refluxed for generate significant amounts of undesired vinyl silanes, their
6 h. Following concentration, the crude tracer was purified by non-polar nature generally make them separable from the
preparative HPLC (Zorbax RX C8, 40A/60B, A = CH3CN, B = 0.1% desired carbon-labeled methylene products. Also, 7 provides
H3PO4). Isolation by extraction, followed by recrystallization access to potentially higher specific activity tracers as the
from methanol/water 2/1 (3 mL), afforded 200 mCi (4% from reagents oxidation/decomposition was not observed. Further
[14C]methyl iodide) of 98.7% radiochemically pure apprepitant 5. experiments are underway using different complexes in an
attempt to influence the reaction pathway to favor olefination
Olefination of ester 2 with [14C]methyl-methyltrimethylsi- and further increase overall label incorporation.
lyltitanocene (7)
Ester 2 (10.5 mg, 0.019 mmol) was dissolved in 300 mL of xylenes
and [14C]methyl (methyltrimethylsilyl)titanocene (7) (16 mg,
0.057 mmol, 3 equivalents, 1.2 mCi) was added. The mixture
References
was aged at 1501C for 4 h. HPLC analysis (Zorbax RX C8, 65A/
[1] R. M. Navari, R. R. Reinhardt, R. J. Gralla, M. G. Kris, P. J. Hesketh,
35B, A = CH3CN, B = 0.1% H3PO4) showed the mixture contained
A. Khojasteh, H. Kindler, T. H. Grote, K. Pendergrass,
S. M. Grunberg, A. D. Carides, B. J. Gertz, N. Engl. J. Med. 1999,
starting ester (2%), [14C]methylene product (42% (19% radio-
chemical yield)), and vinyl silane product (55%). Liquid scintilla-
tion counting of the reaction mixture indicated 390 mCi of the
desired [14C]vinyl ether that had a radiochemical purity of 60%.
340, 190–195. M. S. Kramer, N. Cutler, J. Feighner, R. Shrivastava,
J. Carman, J. J. Sramek, S. A. Reines, G. Liu, D. Snavely, E. Wyatt-
Knowles, J. J. Hale, S. G. Mills, M. MacCoss, C. J. Swain, T. Harrison,
R. G. Hill, F. Hefti, E. M. Scolnick, M. A. Cascieri, G. G. Chicchi,
S. Sadowski, A. R. Williams, L. Hewson, D. Smith, E. J. Carlson,
R. J. Hargreaves, N. M. J. Rupniak, Science 1998, 281, 1640–1645.
[2] K. M. J. Brands, S. W. Krska, T. Rosner, K. M. Conrad, E. G. Corley,
M. Kaba, R. D. Larsen, R. A. Reamer, Y. Sun, F. R. Tsay, Org. Process
Res. Dev. 2006; 10: 109–117. M. Journet, D. Cai, D. L. Hughes,
J. J. Kowal, R. D. Larsen, P. J. Reider, Org. Process Res. Dev. 2005, 9,
490–498. K. M. J. Brands, J. F. Payack, J. D. Rosen, T. D. Nelson,
A. Candelario, M. A. Huffman, M. M. Zhao, J. Li, B. Craig, Z. J. Song,
D. M. Tschaen, K. Hansen, P. N. Devine, P. J. Pye, K. Rossen,
P. G. Dormer, R. A. Reamer, C. J. Welch, D. J. Mathre, N. N. Tsou,
J. M. McNamara, P. J. Reider, J. Am. Chem. Soc. 2003, 125,
2129–2135. C. C. Cowden, R. D. Wilson, B. C. Bishop, I. F. Cottrell, A.
J. Davies, U. H. Dolling, Tetrahedron Lett. 2000, 8661–8664.
C. S. Elmore, D. C. Dean, Y. Zhang, D. G. Melillo, J. Label. Compd.
Radiopharm. 2004, 47, 837–846. J. J. Hale, S. G. Mills, M. MacCoss,
P. E. Finke, M. A. Cascieri, S. Sadowski, E. Ber, G. G. Chicchi, M. Kertz,
J. Metzger, G. Eiermann, N. N. Tsou, F. D. Tattersall, N. M. J. Rupniak,
A. R. Williams, W. Rycroft, R. Hargreaves, D. E. MacIntyre, J. Med.
Chem. 1998, 41, 4607–4614. J. F. Payack, M. A. Huffman, D. Cai,
D. L. Hughes, P. C. Collins, B. K. Johnson, I. F. Cottrell, L. D. Tuma,
Org. Process Res. Dev. 2004, 8, 256–259.
[3] F. N. Tebbe, G. W. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978; 100;
3611–3613. S. H. Pine, Org. React. (NY) 1993, 43, 1–91 (review).
[4] T. R. Howard, J. B. Lee, R. H. Grubbs, J. Am. Chem. Soc. 1980, 102,
6876–6878. K. C. Ott, R. H. Grubbs, J. Am. Chem. Soc. 1981, 103,
5922–5923. D. Strauss, R. H. Grubbs, Organometallics 1982, 1,
1658–1661. E. V. Anslyn, R. H. Grubbs, J. Am. Chem. Soc. 1987, 109,
4880–4890.
[5] N. A. Petasis, E. I. Bzowej. J. Am. Chem. Soc. 1990, 112, 6392–6394.
N. A. Petasis, S. P. Lu, Tetrahedron Lett. 1995, 36, 2393–2396.
N. A. Petasis, E. I. Bzowej. U.S. Patent No. 5,087,790, Feb. 11, 1992.
N. A. Petasis, Y.-H. Hu, Tetrahedron Lett. 1995, 36, 6001–6004.
N. A. Petasis, M. A. Patane, Tetrahdron Lett. 1990, 31, 6799.
[6] D. L. Hughes, J. F. Payack, D. Cai, T. R. Verhoeven, P. J. Reider,
Organometallics 1996, 15, 663–667.
Olefination of Dibenzosurbenone with 7
Dibenzosurbenone (5.9 mg, 0.028 mmol) was dissolved in 300 mL
of xylenes. [14C]methyl(methyltrimethylsilyl)titanocene 7 (stock
solution toluene, 15.8 mg, 0.056 mmol, 2 equivalents, 1.2 mCi)
was added and the mixture aged at 1501C for 4 h. HPLC analysis
(Zorbax RX C8, 50A/50B, A = CH3CN, B = 0.1 % H3PO4) showed
the reaction mixture contained starting dibenzosurbenone
(15%), [14C]methylene product (33% (30% radiochemical yield.)),
and vinyl silane product (51%). A count of reaction mixture
indicated 400 mCi (33%) remained of which 95% was the desired
[14C]methylene compound.
Olefination of 2-Napthaldehyde with 7
2-Napthaldehyde (1.0 mg, 0.0064 mmol) was dissolved in 300 mL
of xylenes. [14C]methyl-methyltrimethylsilyltitanocene 7 (stock
solution toluene, 11.9 mg, 0.013 mmol, 2 equivalents, 225 mCi)
was added and the mixture aged at 1501C for 2 h. (prolonged
heating results in several radiochemical impurities). HPLC
analysis (Zorbax RX C8, 50A/50B, A = CH3CN, B = 0.1 % H3PO4)
showed the mixture contained starting aldehyde (38%),
[14C]methylene product (22% (25% radiochemical yield.)), and
vinyl silane product (39%). A count of reaction mixture indicated
75 mCi (33%) remained of which 90% was the desired
[14C]methylene product.
Conclusion
As our investigation into titanium mediated [14C]olefinations
continues, we have shown that both [14C]dimethyltitanocene (1)
and [14C]methyl(methyltrimethylsilyl) titanocene (7) can be
readily prepared and are quite capable of converting carbonyls
to [14C]methylenes in reasonable radiochemical yields. Although
1 provides usable radiochemical yields in many instances, 7
does offer several advantages: Most importantly, generation
of the mixed titanocene 7 requires only one equivalent
of [14C]methyllithium, reducing the necessary amount of
[14C]methyl iodide. Good radiochemical yields of [14C]olefination
[7] As labeled methane is generated during the reaction, periodic
venting should be used to prevent pressure buildup, especially on
large scale.
[8] N. A. Petasis, E. I. Bzowej, J. Org. Chem. 1992, 57, 1327–1330.
[9] N. A. Petasis, E. I. Bzowej, Tetrahedron Lett. 1993, 34, 943–946.
[10] N. A. Petasis, I. Akritopoulou, Synlett 1992, 665–667.
[11] N. A. Petasis, J. P. Staszzewski, D.-K. Fu, Tetrahedron Lett. 1995, 36,
3619–3622.
[12] N. A. Petasis, D.-K. Fu, J. Am. Chem. Soc. 1993, 115, 7208–7214.
[13] Dimethyltitanocene will decompose if stored in solid form.
Dimethyltitanocene kept in toluene solution is stable for several
months.
J. Label Compd. Radiopharm 2009, 52 514–517
Copyright r 2009 John Wiley & Sons, Ltd.