M.-H. Xie et al. / Tetrahedron Letters 51 (2010) 1213–1215
1215
Table 2
Somei, M.; Yamada, F. Nat. Prod. Rep. 2005, 22, 73–103; (e) Bandini, M.; Melloni,
A.; Tommasi, S.; Umani-Ronchi, A. Synlett 2005, 1199–1222; (f) Patil, S.;
Buolamwini, J. K. Curr. Org. Synth. 2006, 3, 477–498.
Cu(OTf)2-catalyzed Michael addition of pyrrole to acetylenic sulfone
R1 CH2SO2Ar
2. (a) Kam, T. S. In Pelletier, S. W., Ed.; Alkaloids, Chemical and Biological
Perspectives; Pergamon: Amsterdam, 1999; Vol. 4, p 429; (b) Bifulco, G.; Bruno,
I.; Riccio, R.; Lavayre, J.; Bourdy, G. J. Nat. Prod. 1995, 58, 1254–1260; (c)
Chakrabarty, M.; Basak, R.; Harigaya, Y. Heterocycles 2001, 55, 2431–2447; (d)
Hong, C.; Firestone, G. L.; Bjeldanes, L. F. Biochem. Pharmacol. 2002, 63, 1085–
1097; (e) Benabadji, S. H.; Wen, R.; Zheng, J.; Dong, X.; Yuan, S. Acta Pharmacol.
Sin. 2004, 25, 666–672.
HN
Cu(OTf)2 (20 mol%)
CH2Cl2, r.t.
NH
R1
SO2Ar
+
N
H
1
7
Entry
R1
Ar
Yielda (%)
3. For some of the most recent examples, see: (a) Silveira, C. C.; Mendes, S. R.;
Líbero, F. M.; Lenardão, E. J.; Perin, G. Tetrahedron Lett. 2009, 50, 6060–6063; (b)
Seyedi, N.; Saidi, K.; Khabazzadeh, H. Synth. Commun. 2009, 39, 1864–1870; (c)
Liao, B. S.; Chen, J. T.; Liu, S. T. Synthesis 2007, 3125–3128; (d) Deb, M. L.;
Bhuyan, P. J. Tetrahedron Lett. 2006, 47, 1441–1443; (e) Chakrabarty, M.;
Mukherji, A.; Karmakar, S.; Arima, S.; Harigaya, Y. Heterocycles 2006, 68, 331–
338; (f) Nair, V.; Vidya, N.; Abhilash, K. G. Tetrahedron Lett. 2006, 47, 2871–
2873; (g) Gibbs, T. J. K.; Tomkinson, N. C. O. Org. Biomol. Chem. 2005, 3, 4043–
4045.
1
2
3
4
5
6
C6H5
C6H5
n-C5H11
p-CH3C6H4
p-CH3OC6H4
C6H5
p-CH3C6H4
C6H5
p-CH3C6H4
C6H5
C6H5
p-ClC6H4
7a 78
7b 80
7c 58
7d 75
7e 68
7f 78
a
Isolated yield based on 1.
4. (a) Kitamura, T. Eur. J. Org. Chem. 2009, 1111–1125; (b) Barluenga, J.;
Fernández, A.; Rodríguez, F.; Fañanás, F. J. J. Organomet. Chem. 2009, 694,
546–550; (c) Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13,
1358–1373; (d) Yadav, J. S.; Reddy, B. V. S.; Padmavani, B.; Gupta, M. K.
Tetrahedron Lett. 2004, 45, 7577–7579.
5. (a) Ko, K.; Nakano, K.; Watanabe, S.; Ichikawa, Y.; Kotsuki, H. Tetrahedron Lett.
2009, 50, 4025–4029; (b) Tan, B.; Zeng, X. F.; Lu, Y. P.; Chua, P. J.; Zhong, G. F.
Org. Lett. 2009, 11, 1927–1930; (c) Jia, Y. X.; Zhu, S. F.; Yang, Y.; Zhou, Q. L. J. Org.
Chem. 2006, 71, 75–80; (d) Lu, S. F.; Du, D. M.; Xu, J. X. Org. Lett. 2006, 8, 2115–
2118; (e) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
6. (a) Schätz, A.; Rasappan, R.; Hager, M.; Gissibl, A.; Reiser, O. Chem. Eur. J. 2008,
14, 7259–7265; (b) Huang, Z. H.; Zou, J. P.; Jiang, W. Q. Tetrahedron Lett. 2006,
47, 7965–7968; (c) Ma, S. M.; Yu, S. C. Org. Lett. 2005, 7, 5063–5065; (d) Bartoli,
G.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L. Synthesis 2004,
895–900.
7. For reviews, see: (a) Back, T. G. Tetrahedron 2001, 57, 5263–5301; (b) Nájera, C.;
Yus, M. Tetrahedron 1999, 55, 10547–10658.
8. (a) Xie, M. H.; Wang, J. L.; Zhang, W.; Wang, S. W. J. Organomet. Chem. 2009, 694,
2258–2262; (b) Xie, M. H.; Gu, X. X.; Wang, J. L.; Zhang, J. H.; Lin, G. F.; Wang, S.
W. Appl. Organomet. Chem. 2009, 23, 258–266; (c) Xie, M. H.; Wang, J. L.; Gu, X.
X.; Sun, Y.; Wang, S. W. Org. Lett. 2006, 8, 431–434.
Figure 1. The molecular structure of compound 7a.
9. General procedure for the synthesis of compound 3a: Cu(OTf)2 22 mg (0.06 mmol)
was added to a solution of indole (2a) 105 mg (0.9 mmol) and (1-phenyl-2-
tosyl)ethyne (1a) 77 mg (0.3 mmol) in CH2Cl2 (4 mL). The reaction mixture was
stirred at room temperature. After the reaction was complete (monitored by
TLC), the mixture was quenched with a saturated NH4Cl solution and was
extracted with CH2Cl2 (3 Â 10.0 mL). The organic layer was combined and dried
over MgSO4. After filtration and removal of solvent in vacuo, the crude product
was purified with flash chromatography (silica gel, petroleum ether–ethyl
acetate 5:1 as eluent) to afford product 3-(1-(1H-indol-3-yl)-1-phenyl-2-
tosylethyl)-1H-indole 3a. White solid, mp 167–168 °C. 1H NMR (300 MHz,
CDCl3): d 8.07 (s, 2H), 7.45 (d, J = 7.3 Hz, 2H), 7.31–7.14 (m, 8H), 7.02–6.95 (m,
6H), 6.73–6.69 (m, 3H), 4.77 (s, 2H), 2.20 (s, 3H). 13C NMR (75 MHz, DMSO): d
144.5, 142.8, 137.8, 135.7, 128.8, 128.3, 128.0, 127.9, 127.6, 126.6, 126.5, 123.3,
123.1, 116.8, 114.1, 111.3, 64.7, 46.8, 21.4. IR (KBr): v (cmÀ1) 3398, 1492, 1282,
1138, 1080. HRMS (EI) calcd for C31H26N2O2S (M+): 490.1715, found 490.1718.
10. (a) Oyamada, J.; Kitamura, T. Tetrahedron 2009, 65, 3842–3847; (b) Singh, K.;
Behal, S.; Hundal, M. S. Tetrahedron 2005, 61, 6614–6622; (c) Sobral, A. J. F. N.;
Rebanda, N. G. C. L.; Silva, M.; Lampreia, S. H.; Silva, M. R.; Beja, A. M.; Paixão, J.
A.; Gonsalves, A. M. R. Tetrahedron Lett. 2003, 44, 3971–3973.
In conclusion, we have developed a novel and straightforward
method to synthesize sulfonyl-containing bis(indolyl)alkanes and
bis(pyrrolyl)alkanes by double Michael addition of indole or pyr-
role to acetylenic sulfone at room temperature in the presence of
both moisture and air. This is a convenient, atom-efficient, and
green method to synthesis the important indole and pyrrole
derivatives. Due to the versatile reactivity of the sulfonyl group,
it is predictable that these compounds are potential precursors of
differently substituted bis(indolyl)alkanes and bis(pyrrolyl)alkanes.
Acknowledgments
The authors are grateful to the National Natural Science Foun-
dation of China (Nos. 20672001 and 20772001) for financial sup-
port of this work. We are also grateful to Professor Jiping Hu,
Yun Wei, and Cuiping Gu for their helpful assistances.
11. General procedure for the synthesis of compound 3-(1-phenyl-1-(1H-pyrrol-3-yl)-
2-tosylethyl)-1H-pyrrole 7a: Compound 7a was prepared by the similar
procedure as described above. White solid, mp 186–187 °C. 1H NMR
(300 MHz, CDCl3): d 8.99 (s, 2H), 7.46 (d, J = 7.3 Hz, 2H), 7.22–7.16 (m, 5H),
6.97 (d, J = 6.9 Hz, 2H), 6.76 (s, 2H), 6.10 (m, 2H), 5.66 (s, 2H), 4.47 (s, 2H), 2.42
(s, 3H). 13C NMR (75 MHz, CDCl3): d 144.4, 142.6, 138.2, 133.9, 129.8, 128.2,
Supplementary data
128.1, 127.5, 127.4, 117.9, 108.6, 107.8, 67.7, 48.4, 21.6. IR (KBr): v (cmÀ1
)
3437, 1454, 1265, 1134, 1083. HRMS (EI) calcd for C23H22N2O2S: 390.1402,
found 390.1406.
Supplementary data associated with this article can be found, in
12. X-ray data for 7a have been deposited at the Cambridge Crystallographic Data
Centre, deposition number CCDC 736055. Crystal data for 7a: C23H22N2O2S,
MW = 390.49, monoclinic, space group C2/c, a = 41.797(10), b = 9.486(2),
c = 41.828(10) Å;
a
= 90, b = 166.078(4),
= 0.183 mmÀ1, k = 0.71073 Å; F(0 0 0) 1648, 4588
c
= 90°. V = 3990.2(16) Å3, T = 293 K,
References and notes
Z = 8, Dcalcd = 1.300 g cmÀ1
,
l
independent reflections (Rint = 0.0553), 16,398 reflections collected; refinement
1. (a) Sundberg, R. J. Indoles; Academic Press: New York, 1996; (b) Sexton, J. E.
Indoles (The Chemistry of Heterocyclic Compounds V. 25); Wiley: New York, 1983;
(c) Wang, M. Z.; Wong, M. K.; Che, C. M. Chem. Eur. J. 2008, 14, 8353–8364; (d)
method, full-matrix least-squares on F2; goodness-of-fit on F2 = 1.061; Final R
indices [I > 2r(I)] R1 = 0.0717, wR2 = 0.1611.