1304
S. Yan et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1302–1305
Table 1
Antimicrobial activity in the agar diffusion assay (diameter of inhibition zone, measured in mm)
Compds
Gram-positive bacteria
Gram-negative bacteria
Mycobacterium vaccae
Bacillus subtilis Micrococcus luteus Staphylococcus aureus
Enterococcus faecalis
Escherichia coli Pseudomonas aeruginosa
ATCC 6633
ATCC 10240
SG 511a 134/93 (MRSA) ATCC 49532 1528 (VRE) ATCC 25922
K799/WTa
K799/61b
IMET 10670
1
29
14
15
31/35P
26.5
38
27/36P NT
26/35P NT
24/33P NT
23/32P NT
24/35P NT
13/19p 19
25
24
21
21
21.5
19
NT
NT
NT
19
NT
NT
NT
NT
NT
16
12P
19
16
NT
NT
NT
NT
12P
12P
NT
NT
15
0
0
0
0
0
0
NT
NT
NT
0
0
0
0
NT
NT
0
0
0
0
0
10P
17h
10P
11P
11P
0
0
0
0
11P
10P
10P
12P
0
42
43
NT
43
43
19p
13
30
15
35
18
12h
0
38/46p
34.5
38
41
16
NT
NT
NT
22/32P
15p
12P
0
NT
NT
15h
14
0
23/26P
26/29P
26/29P
12/18P
18P
17/30P
19P
21/28P
17P
13h
0
14P
13P
16
0
23a
23b
24a
24b
25a
25b
26a
26b
27a
27b
28a
28b
Cipro
14/20p
NT
NT
NT
0
0
0
0
NT
NT
0
0
35
16P
14p
15/21p 25
16P
18p
18/22p NT
15p
14p
0
15P
14P
12.5p
0
NT
NT
NT
14p
14p
NT
NT
0
17
12.5
12p
NT
NT
12.5
12
18
0
18
0
0
14P
12h
29.5
10P
10P
39
0
24
13
31/40P
19
p, partially clear inhibition zone/colonies in the inhibition zone.
P, unclear inhibition zone/many colonies in the inhibition zone.
h, faint indication of inhibition zone.
Exactly 50
lL of a 2.0 mM solution of each compound dissolved in 1:9 DMSO/MeOH was filled in 9 mm wells in agar media (Standard I Nutrient Agar, Serva or Mueller Hinton
II Agar, Becton, Dickinson and Company). Inhibition zones read after incubation at 37 °C for 24 h. Cipro (ciprofloxacin) was dissolved in H2O to give 5
lg/mL solution.
a
Wild type.
b
Permeability mutant.
tional groups, in moderate yields. In addition, under Mo(CO)6 condi-
tions, the sulfoxide group of 25a and 25b was also reduced. For com-
parison during the biological testing, an oxazolidinone analog 29
with a C-5 acetate substituent was synthesized from compound 15
(Scheme 4).
bacterial assays. We also thank the Lizzadro Magnetic Resonance
Research Center at Notre Dame for NMR facility and Nonka Sevova
for mass spectroscopic analyses. TAW acknowledges the University
of Notre Dame Chemistry–Biochemistry–Biology Interface (CBBI)
Program and NIH Training Grant T32GM075762 for a fellowship.
With the biological profile of parent linezolid, 1, known for
comparison, all the oxazolidinone analogs 23a–28b, 29, as well
as precursors 14–16, and ciprofloxacin, as a positive control, were
subjected to broad antibacterial studies against various strains of
Gram-positive and Gram-negative bacteria as well as Mycobacte-
rium vaccae, using agar diffusion assays (Table 1).15 Compound
29 was found to be comparable to linezolid (1) itself for all tested
organisms, as expected. Interestingly, all the oxazolidinone precur-
sors 14–16 were roughly equipotent in vitro with linezolid (1)
against several Gram-positive organisms, including Bacillus subtilis,
S. aureus, E. faecalis and M. luteus. They also exhibited antimycobac-
terial activity and could potentially be useful for treatment of M.
tuberculosis as they induced large inhibition zones against M. vac-
cae, a common model for M. tuberculosis. Most oxazolidinone ana-
logs with bicyclic oxazine or aminocycloalkenol moieties at the C-5
side chain, generated from NDA chemistry, had antimicrobial pro-
files similar to linezolid (1), but at a generally diminished level of
activity. In general, oxazolidinone analogs substituted with
[2.2.1] bicyclic oxazines (23a–25a) were more active than those
with [2.2.2] bicyclic oxazines (23b–25b). Among them, compound
25a derived from thiomorpholine exhibited the best activity. Ana-
logs 26a–28b, derived from reduction of the N–O bonds were rel-
atively inactive compared to their parent cycloadducts.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Shinabarger, D. L.; Marotti, K. R.; Murray, R. W.; Lin, A. H.; Melchoir, E. P.;
Swaney, S. M.; Dunyak, D. S.; Demyan, W. F.; Buysse, J. M. Antimicrob. Agents
Chemother. 1997, 41, 2132; (b) Kloss, P.; Xiong, L.; Mankin, A. S.; Shinabarger, D.
L.; Mankin, A. S. J. Mol. Biol. 1999, 294, 93.
2. (a) Hutchinson, D. K. Curr. Top. Med. Chem. 2003, 3, 1021; (b) Barbachyn, M. R.;
Ford, C. W. Angew. Chem., Int. Ed. 2003, 42, 2010; (c) Wookey, A.; Turner, P. J.;
Greenhalgh, J. M.; Eastwood, M.; Clarke, J.; Sefton, C. Clin. Microbiol. Infect. 2004,
10, 247; (d) Phillips, O. A.; Rotimi, V. O.; Jamal, W. J.; Shahin, M.; Verghese, T. L. J.
Chemother. 2003, 15, 113; (e) Moellering, R. C., Jr. Ann. Intern. Med. 2003, 138, 135.
3. Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz,
D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.;
Zurenko, G. E. J. Med. Chem. 1996, 39, 673.
4. Gonzales, R. D.; Schreckenberger, P. C.; Graham, M. B.; Kelkar, S.; DenBesten, K.;
Quinn, J. P. Lancet 2001, 357, 1179.
5. (a) Tsiodras, S.; Gold, H. S.; Sakoulas, G.; Eliopoulos, G. M.; Wennersten, C.;
Venkataraman, L.; Moellering, R. C.; Ferraro, M. J. Lancet 2001, 358, 207; (b)
Xiong, L.; Kloss, P.; Douthwaite, S.; Anderson, N. M.; Swaney, S.; Shinabarger, D.
C.; Mankin, A. S. J. Bacterial. 2000, 182, 5325; (c) Mutnick, A. H.; Enne, V.; Jones,
R. N. Ann. Pharmacother. 2003, 37, 769.
6. (a) Brickner, S. Curr. Pharm. Des. 1996, 2, 175; (b) Ford, C. W.; Barbachyn, M. R.
Angew. Chem., Int. Ed. 2003, 42, 2010; (c) Hutchinson, D. K. Expert. Opin. Ther.
Patents 2004, 14, 1309; (d) Renslo, A. R.; Luehr, G. W.; Gordeev, M. F. Bioorg.
Med. Chem. 2006, 14, 4227; (e) Prasad, J. V. Curr. Opin. Microbiol. 2007, 10, 454.
7. (a) Phillips, O. A.; Udo, E. E.; Ali, A. A. M.; Samuel, S. M. Bioorg. Med. Chem. 2005,
13, 4113; (b) Phillips, O. A.; Udo, E. E.; Ali, A. A. M.; Samuel, S. M. Eur. J. Med.
Chem. 2007, 42, 214.
8. Paget, S. D.; Boggs, C. M.; Foleno, B. D.; Goldschmidt, R. M.; Hlasta, D. J.;
Weidner-Wells, M. A.; Werblood, H. M.; Bush, K.; Macielag, M. J. Bioorg. Med.
Chem. Lett. 2006, 16, 4537.
9. For reviews, see: (a) Streith, J.; Defoin, A. Synthesis 1994, 11, 1107; (b) Vogt, P.
F.; Miller, M. J. Tetrahedron 1998, 54, 1317; (c) Yamamoto, H.; Momiyama, N.
Chem. Commun. 2005, 3514; (d) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem.
2006, 2031; (e) Samarakoon, T.; Hanson, R. R. Chemtracts 2007, 20, 220.
In summary, we have synthesized a series of novel oxazolidi-
none antibiotics with [2.2.1] and [2.2.2] bicyclic oxazine as well
as aminocycloalkenol moieties at the C-5 side chain through nitro-
so Diels–Alder chemistry. These oxazolidinone analogs exhibited
in vitro antibacterial profiles similar to that of linezolid.
Acknowledgments
We gratefully acknowledge the NIH(GM 075855) for support of
this research. We thank Uta Wohlfeld (HKI) for performing anti-