solvent was evaporated and the residue was dissolved in EtOAc.
The organic layer was washed with 20% Na2CO3 followed by HCl,
water and brine, dried with anhydrous Na2SO4 and evaporated
in vacuo to obtain the crude product which was purified through
column chromatography (30% EtOAc in hexane)
2 For peptide synthesis using acid azides see: (a) J. Lutz, H.-J. Musiol, and
L. Moroder, Vol. E22a, pp 427 in Houben-Weyl: Synthesis of Peptides &
Peptidomimetics, M. Goodman, A. Felix, L. Moroder and C. Toniolo,
ed.; Georg Thieme Verlag: Stuttgart, New York; For the utility of
Boc/Z-amino acid azides in total synthesis of ribonuclease in solution,
see: (b) N. Fujii and H. J. Yajima, J. Chem. Soc., Perkin Trans. 1, 1981,
831–841 and references cited therein; For Fmoc-acid azides as peptide
coupling agents see: (c) V. V. Suresh Babu, K. Ananda and G. R.
Vasanthakumar, J. Chem. Soc., Perkin Trans. 1, 2000, 4328–4331; For
applications of acids azides in peptidomimetics synthesis see: (d) M.
Chorev, Biopolymers Peptide Sci, 2005, 80, 67–84; (e) M. D. Fletcher
and M. M. Campbell, Chem. Rev., 1998, 98, 763–795.
General procedure for the synthesis of ureas and carbamates 5a–g
and 6a–e
To a solution of acid (1.0 mmol) in dry THF, DIEA (1.0 mmol)
and HBTU (1.1 mmol, 148.5 mg) were added at 0 ◦C followed
by NaN3 (1.5 mmol) in DMSO (1 mL) and stirred for 25 min.
It was then refluxed or ultrasonicated for 30 min followed by the
addition of 1.0 mmol of an amino acid ester or an alcohol and
the refluxing or ultrasonication was continued till the completion
of the reaction. The solvent was then evaporated and resultant
residue was washed with water. The crude product was purified
through recrystallization from DMSO-water.
3 C. O. Kangani, B. W. Day and D. E. Kelley, Tetrahedron Lett., 2008,
49, 914–918.
4 (a) A. Palani, S. Shapiro, M. D. McBriar, J. W. Clader, W. J. Greenlee,
B. Spar, T. J. Kowalski, C. Farley, J. Cook, M. Van Heek, B. Weig, K.
O’Neill, M. Graziano and B. Hawes, J. Med. Chem., 2005, 48, 4746–
4749; (b) J. R. Merritt, J. Liu, E. Quadros, M. L. Morris, R. Liu, R.
Zhang, B. Jacob, J. Postelnek, C. M. Hicks, W. Chen, E. F. Kimble,
W. L. Rogers, L. O’Brien, N. White, H. Desai, S. Bansal, G. King, M. J.
Ohlmeyer, K. C. Appell and M. L. Webb, J. Med. Chem., 2009, 52,
1295–1301.
5 (a) B. S. Patil, G. R. Vasanthakumar and V. V. Suresh Babu, J. Org.
Chem., 2003, 68, 7274–7280; (b) V. V. Sureshbabu, B. S. Patil and R.
Venkataramanarao, J. Org. Chem., 2006, 71, 7697–7705; (c) L. Fischer,
V. Semetey, J.-M. Lozano, A.-P. Schaffner, J.-P. Briand, C. Didierjean
and G. Guichard, Eur. J. Org. Chem., 2007, 2511–2525; (d) G. Guichard,
V. Semetey, C. Didierjean, A. Aubry, J.-P. Briand and M. Rodriguez,
J. Org. Chem., 1999, 64, 8702–8705; (e) G. Guichard, V. Semetey, M.
Rodriguez and J.-P. Briand, Tetrahedron Lett., 2000, 41, 1553–1557.
6 (a) J. M. Bermann and M. Goodman, Int. J. Pept. Prot. Res., 1984, 23,
610–620; (b) M. Chorev and M. Goodman, Int. J. Pept. Prot. Res., 1983,
21, 268–265; For the synthesis of amino alkyl formamides see: (c) N. S.
Sudarshan, N. Narendra, H. P. Hemantha and V. V. Sureshbabu, J. Org.
Chem., 2007, 72, 9804–9807; (d) V. V. Sureshbabu, N. Narendra and G.
Nagendra, J. Org. Chem., 2009, 74, 153–157; For unnatural amino acids
see: (e) E. A. Englund, H. N. Gopi and D. H. Appella, Org. Lett., 2004,
6, 213–215.
7 For selected reports see: (a) P. W. Erhardt, J. Org. Chem., 1979, 44, 883–
884; (b) G. W. Rewcastle and W. A. Denny, Synthesis, 1985, 220–222;
(c) A. E. Luedtke and J. W. Timberlake, J. Org. Chem., 1985, 50, 268–
270; (d) A. Padwa, M. A. Brodney, B. Liu, K. Satake and T. Wu, J. Org.
Chem., 1999, 64, 3595–3607; (e) C. K. Govindan, Org. Process Res.
Dev., 2002, 6, 74–77; For the use of HN3/pyridine: (f) J. M. Lemmens,
W. W. J. M. Blommerde, L. Thijs and B. Zwanenburg, J. Org. Chem.,
1984, 49, 2231–2235.
8 For selected reports see: (a) M. Chorev, S. A. MacDonald and M.
Goodman, J. Org. Chem., 1984, 49, 821–827; (b) C. Bolm, C. L.
Dinter, I. Schiffers and L. Defrere, Synlett, 2001, 1875–1877; (c) E. A.
Englund, H. N. Gopi and D. H. Appella, Org. Lett., 2004, 6, 213–
215; (d) R. K. Boekman and L. M. Reeder, Synlett, 2004, 1399–1405;
(e) P. H. Dussault and Chunping Xu, Tetrahedron Lett., 2004, 45, 7455–
7457.
9 J. R. Pfister and W. E. Wymann, Synthesis, 1983, 38–39.
10 G. K. Surya Prakash, P. S. Iyer, M. Arvanaghi and G. A. Olah, J. Org.
Chem., 1983, 48, 3358–3359.
Characterization data for representative compounds
2-(1H-Indol-3-yl)acetyl azide, 2e. Rf 0.4 (n-hexane–AcOEt
8 : 2); IR (KBr) nmax = 2138 cm-1; 1H NMR (CDCl3, 400 MHz) d:
3.86 (2H, s), 7.02 (1H, d, J = 2.0 Hz), 7.05–7.59 (4H, m), 8.84 (1H,
s); 13C NMR (CDCl3,100 MHz) d 31.84, 111.81, 111.93, 120.03,
122.50, 123.74, 123.89, 127.69, 136.69, 172.83; HRMS Calc’d for
C10H8N4O m/z: 201.0776 (M+ + H), found 201.0781
(S)-Methyl
2-(3-((R)-1-((S)-2-(((9H-fluoren-9-yl)methoxy)-
carbon-yl)-3-methylbutanamido)ethyl)ureido)-4-methylpentanoate
{Fmoc-Val-Ala-w[NHCONH]-Leu-OMe}, 5f. Rf 0.4 (CHCl3–
1
MeOH 9 : 1); IR (KBr) nmax = 1652 cm-1; H NMR (DMSO-d6,
400 MHz) d: 0.81 (6H, br), 1.08 (6H, br), 1.18 (2H, m), 2.52–2.63
(2H, br), 3.53 (3H, s), 4.23 (1H, m) 4.41–4.52 (2H, m), 4.62 (2H,
d, J = 7.0 Hz), 5.09 (1H, m), 6.32 (1H, br), 7.89–7.21 (8H, m); 13
C
NMR (DMSO-d6, 100 MHz) d 18.99, 20.20, 24.18, 25.30, 31.00,
35.00, 47.55, 55.34, 56.17, 61.03, 66.60, 126.27, 128.02, 128.60,
129.88, 141.58, 144.76, 156.30, 157.10, 171.35, 174.39; HRMS
Calc’d for C30H40N4O6 m/z: 575.2846 (M+ + Na), found 575.2853
Ethyl thiophen-2-ylcarbamate, 6f. Rf 0.4 (n-hexane–AcOEt
7 : 3); IR (KBr) nmax = 1728 cm-1; 1H NMR (DMSO-d6, 400 MHz)
d 1.25 (3H, t, J = 7.24 Hz), 4.21 (2H, q, J = 6.8 Hz), 6.60–6.78
(3H, m), 8.10 (1H, s); 13C NMR (DMSO-d6, 100 MHz) d 14.98,
62.37, 112.80, 117.68, 125.15, 140.69, 154.59, HRMS Calc’d for
C7H9NO2S m/z: 172.0432 (M+ + H), found 172.0428
11 A. Padwa, K. R. Crawford, P. Rashatasakhon and M. Rose, J. Org.
Chem., 2003, 68, 2609–2617.
12 B. P. Bandgar and S. S. Pandit, Tetrahedron Lett., 2002, 43, 3413–3414.
13 V. K. Gumaste, B. M. Bhawal and A. R. A. S. Deshmukh, Tetrahedron
Lett., 2002, 43, 1345–1346.
Acknowledgements
We thank Department of Science and Technology (Grant no.
SR/S1/OC/26/2008) and Council of Scientific and Industrial
Research, Govt. of India for financial support. H. S. L. thanks
Siddaganga Institute of Technology, Tumkur, India for research
leave.
14 H. Eilingsfeld, M. Seefelder and H. Weidinger, Angew. Chem., 1960,
72, 836–845.
15 A. R. Katritzky, K. Widyan and K. Kirichnko, J. Org. Chem., 2007, 72,
5802–5804.
16 (a) M. Bodanszky, and A. Bodanszky, The practice of peptide synthesis.
Springer Verlag, Berlin, 1984, p. 91; (b) J. E. Macor, G. Mullen, P.
Verhoest, A. Sampognaro, B. Shepardson and R. A. Mack, J. Org.
Chem., 2004, 69, 6493–6495; (c) M. Nettekoven and C. Jenny, Org.
Process Res. Dev., 2003, 7, 38–43.
17 For reports on DPPA see: (a) M. R. Pawia, S. J. Lobbestael, C. P.
Taylor, F. M. Hershenson and D. L. Miskell, J. Med. Chem., 1990,
33, 854–861; (b) V. V. Sureshbabu, G. Chennakrishnareddy and N.
Narendra, Tetrahedron Lett., 2008, 49, 1408–1412; For reports on
Deoxo-Flour/NaN3 see: (c) C. O. Kangani, B. W. Day and D. E.
References
1 (a) S. Brase, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem.,
Int. Ed., 2005, 44, 5188–5240 and references cited therein; (b) E. F. V.
Scriven and K. Turnbull, Chem. Rev., 1988, 88, 297–368 and references
therein.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 835–840 | 839
©