Notes and references
1 T. Cupido, J. Tulla-Puche, J. Spengler and F. Albericio, Curr.
Opin. Drug Discovery Dev., 2007, 10, 768.
2 T. Bruckdorfer, O. Marder and F. Albericio, Curr. Pharm.
Biotechnol., 2004, 5, 29.
3 R. A. Hughes and C. J. Moody, Angew. Chem., Int. Ed., 2007, 46,
7930.
4 R. M. Freidinger, J. Med. Chem., 2003, 46, 5553.
5 R. M. Freidinger, D. S. Perlow and D. F. Veber, J. Org. Chem.,
1982, 47, 104.
6 W. L. Scott, J. G. Martynow, J. C. Huffman and M. J. O’Donnell,
J. Am. Chem. Soc., 2007, 129, 7077.
7 E. Benedetti, C. Pedone and M. Saviano, Front. Drug
Des. Discovery, 2007, 3, 539.
8 R. M. Freidinger, D. F. Veber, D. S. Perlow, J. R. Brooks and
R. Saperstein, Science, 1980, 210, 656.
9 A. Piserchio, Y. Han, M. Chorev and D. F. Mierke, Biopolymers,
2002, 64, 16.
10 M. Goodman, C. Zapf and Y. Rew, Biopolymers, 2001, 60, 229.
11 A. J. Barrett, N. D. Rawlings and J. F. Woessner, Cysteine, Serine
and Threonine Peptidases, Elsevier, London, UK, 2nd edn, vol. 2:
Handbook of Proteolytic Enzymes, 2004.
12 J. C. Powers, J. L. Asgian, O. D. Ekici and K. E. James, Chem.
Rev., 2002, 102, 4639.
Scheme
5 Solid-phase synthesis of pentapeptide mimetic 15
employing 13.
13 E. J. Goldsmith, R. Akella, X. Min, T. Zhou and
J. M. Humphreys, Chem. Rev., 2007, 107, 5065.
14 H. C. Hang and C. R. Bertozzi, Bioorg. Med. Chem., 2005, 13, 5021.
15 H. D. Kulasekara and S. I. Miller, Nat. Cell Biol., 2007, 9, 734.
16 J. Song, C. Chao and Y. Xu, Cell Cycle, 2007, 6, 1412.
17 P. R. Guzzo, M. P. Trova, T. Inghardt and M. Linschoten,
Tetrahedron Lett., 2002, 43, 41.
18 A. B. Avenoza, J. I. Barriobero, C. Cativiela, M. A. Fernandez-
Recio, J. M. Peregrina and F. Rodriguez, Tetrahedron, 2001, 57,
2745.
of the tBu ester with TFA in DCM led to acid 13 which was
directly activated without purification and coupled to resin
bound Phe (Scheme 5). Subsequently, for the capping of free
amino groups, the resin was incubated with Ac2O in pyridine
which acetylated the b-hydroxyl as well (14). Following a
standard Fmoc procedure the peptide sequence was elongated
by Gly and Ala. The Fmoc-protected pentapeptide mimetic 15
was obtained by cleavage with TFA containing 2.5% of each
TIS and water and finally isolated by RP-HPLC in a 37%
overall yield.
19 F. Clerici, M. L. Gelmi and A. Gambini, J. Org. Chem., 1999, 64,
5764.
20 F. Clerici, M. L. Gelmi and A. Gambini, J. Org. Chem., 2000, 65,
6138.
Pentapeptide mimetic 15 was fully characterized by NMR
spectroscopy (see ESIw). Further ROESY experiments showed
several NOE contacts from Phe5 to the hydroxylactam. These
observations indicate that the C-terminal part of 15 exhibits a
turn-type conformation that is stabilized by the lactam ring.
In conclusion, with the objective to develop a synthetic
access to a nature-like constrained Thr motif, we developed
an efficient synthesis for b-hydroxy-g-lactam from easily
obtainable amino acid epoxides 3 and 9. The epoxide opening
reaction with an amino acid amine as the key-step was
optimized to good yields employing a microwave reactor
and Ca(OTf)2 as activator. The methodology presented here
allowed the assembly of this motif in solution and its sub-
sequent incorporation as a dipeptide building block on solid
support as demonstrated by the syntheses of several examples.
Structural analysis of pentapeptide mimetic 15 by NMR
experiments gives strong evidence of the occurrence of a
preferred conformation. Ongoing research includes the bio-
logical evaluation as well as detailed structural analysis of
peptides containing the cThr motif.
21 G. Haberhauer and F. Rominger, Synlett, 2003, 780.
22 T. Doi, Y. Miura, S. Kawauchi and T. Takahashi, Chem.
Commun., 2005, 4908.
23 E. Biron, J. Chatterjee and H. Kessler, J. Pept. Sci., 2006, 12, 213.
24 R. Breinbauer, I. R. Vetter and H. Waldmann, Angew. Chem., Int.
Ed., 2002, 41, 2878.
25 Compound
1 was reported as an undesired side product:
T. Tashiro, S. Fushiya and S. Nozoe, Chem. Pharm. Bull., 1988,
36, 893.
26 The term ‘cyclothreonine’ has been used for a Thr were the
hydroxyl-O is linked to the amide-N: U. Anthoni, T. M. Fatum
and C. Flensburg, Acta. Crystallogr., Sect. C: Cryst. Struct.
Commun., 1998, C54, 240.
27 C. Wyss, R. Batra, C. Lehmann, S. Sauer and B. Giese, Angew.
Chem., Int. Ed. Engl., 1996, 35, 2529.
28 S. Sauer, A. Schuhmacher, F. Barbosa and B. Giese, Tetrahedron
Lett., 1998, 39, 3685.
29 K. J. Shaw, J. R. Luly and H. Rapoport, J. Org. Chem., 1985, 50,
4515.
30 T. Van Truong and H. Rapoport, J. Org. Chem., 1993, 58, 6090.
31 S. Rodriguez-Escrich, D. Popa, C. Jimeno, A. Vidal-Ferran and
M. A. Pericas, Org. Lett., 2005, 7, 3829.
32 C. Schneider, Synthesis, 2006, 3919.
33 M. Sova, A. Babic, S. Pecar and S. Gobec, Tetrahedron, 2007, 63,
141.
F.S. thanks the German Academic Exchange Service
(DAAD) for a fellowship. This work was partially supported
by CICYT (CTQ2006-03794/BQU), the Instituto de Salud
Carlos III (CB06_01_0074), the Generalitat de Catalunya
(2009SGR 1024), the Institute for Research in Biomedicine,
and the Barcelona Science Park.
34 A. Babic, M. Sova, S. Gobec and S. Pecar, Tetrahedron Lett., 2006,
47, 1733.
35 L. Carpino, A. El-Faham, C. A. Minor and F. Albericio, J. Chem.
Soc., Chem. Commun., 1994, 201.
36 R. G. Shea, J. N. Fitzner, J. E. Fankhauser, A. Spaltenstein,
P. A. Carpino, R. M. Peevey, D. V. Pratt, B. J. Tenge and
P. B. Hopkins, J. Org. Chem., 1986, 51, 5243.
ꢀc
This journal is The Royal Society of Chemistry 2010
1268 | Chem. Commun., 2010, 46, 1266–1268