TABLE 2. 1H NMR Spectra of Compounds 1-3, 7, 8, 10-13
Com-
pound
Chemical shifts, δ, ppm (J, Hz, DMSO-d6)
1
2.47 (3Н, s, СН3); 3.22 (3Н, s, ОСН3); 3.45 (3Н, s, NCH3);
7.25 (1Н, dd, J = 6.9 and J = 5.0, Н-5); 7.67 (1Н, d, J = 7.3, Н-4);
8.48 (1Н, d, J = 3.7, Н-6)
2
3
2.74 (3Н, s, СН3); 7.41 (1Н, dd, J = 7.4 and J = 5.0, Н-5); 8.13 (1Н, d, J = 7.8, Н-4);
8.63 (1Н, d, J = 3.2, Н-6); 10.22 (1Н, s, СНО)
1.20-1.82 (10Н, m, (СН2)5); 2.64 (3Н, s, СН3); 3.29 (1Н, m, СН2СНСН2);
7.26 (1Н, dd, J = 7.3 and J = 5.0, Н-5); 8.06 (1Н, d, J = 7.8, Н-4);
8.46 (1Н, d, J = 3.2, Н-6); 8.61 (1Н, s, СН=N)
7
1.42 (9Н, m, С(СН3)3); 1.79-1.92 (2Н, m, CH2CH); 2.01-2.11 (2Н, m, CH2CH);
2.92 (2Н, m, CH2N); 3.05 (1Н, m, CH2CHCH2); 4.28 (2Н, m, CH2N);
7.45 (1Н, dd, J = 7.8 and J = 4.1, Н-3); 7.73 (1Н, s, Н-8); 8.23 (1Н, d, J = 7.8, Н-4);
9.04 (1Н, d, J = 2.7, Н-2); 9.23 (1Н, s, Н-5)
8
2.03-2.20 (4Н, m, CH2CHCH2); 3.00-3.11 (2Н, m, CH2N); 3.30 (1Н, m, CH2CHCH2);
3.39 (2Н, m, CH2N); 7.78 (1Н, dd, J = 8.2 and J = 4.6, Н-3); 7.90 (1Н, s, Н-8);
8.72 (1H, d, J = 8.2, Н-4); 9.09 (1Н, br. s, NH); 9.20 (1H, d, J = 3.2, Н-2);
9.31 (1Н, br. s, HCl); 9.53 (1Н, s, Н-5)
10
11
1.39 (9Н, m, С(СН3)3); 1.45-2.10 (4Н, m, СНСН2СН2); 2.82 (1Н, m, CH2N);
2.96 (1Н, m, CH2N); 3.10 (1Н, m, CH2CHCH2); 3.92 (1Н, m, CH2N);
4.15 (1Н, m, CH2N); 7.61 (1Н, dd, J = 7.7 and J = 4.1, Н-3); 7.78 (1Н, s, Н-8);
8.50 (1Н, d, J = 7.8, Н-4); 9.06 (1Н, d, J = 2.7, Н-2); 9.23 (1Н, s, Н-5)
1.81-2.12 (4Н, m, СНСН2СН2); 2.96 (1Н, m, CH2CHCH2); 3.35 (2Н, m, CH2N);
3.56 (2Н, m, CH2N); 7.81 (1Н, dd, J = 8.2 and J = 4.6, Н-3); 8.06 (1Н, s, Н-8);
8.81 (1H, d, J = 8.2, Н-4); 9.26 (1H, d, J = 3.2, Н-2); 9.50 (1Н, br. s, NH);
9.55 (2Н, m, Н-5 + HCl)
12
13
1.42 (9Н, m, С(СН3)3); 1.75-1.89 (4Н, br. s, CH2CHCH2); 2.91 (2Н, br. s, CH2N);
3.69 (1Н, m, CH2CHCH2); 4.12 (2Н, m, CH2N); 7.72 (1Н, dd, J = 8.2 and J = 4.1, Н-3);
8.58 (1Н, d, J = 7.8, Н-4); 9.19 (1Н, d, J = 3.7, Н-2); 9.31 (1Н, s, Н-5)
1.42 (9Н, m, С(СН3)3); 1.79 (4Н, br. s, CH2CHCH2); 2.90 (2Н, br. s, CH2N);
3.65 (1Н, m, CH2CHCH2); 4.12 (2Н, m, CH2N); 8.93 (1Н, s, Н-4); 9.24 (1Н, s, Н-2);
9.29 (1Н, s, Н-5)
1
The H NMR spectra (Table 2) of the N-Boc-substituted 7-piperidyl[1,6]naphthyridines 7 and 10 show
signals for the piperidyl fragment at 1.5-4.0 and a set of signals in the range 7.45-9.55 ppm for the aromatic
fragment protons. The spectra of compounds 8 and 11 show general agreement with a low field shift for the
aromatic proton signals of 0.16-0.49 ppm relative to those of compounds 7 and 10. This points to the formation
of a hydrochloride in the naphthyridine fragment in which the protons signals of the salt part are strongly
broadened as a result of exchange with water present in the DMSO. The salt part of the piperidine fragment
appears as broadened signals at 9.31 and 9.55 ppm for compounds 8 and 11 respectively. The nine protons of the
tert-butoxycarbonyl group resonate as a sharp singlet at 1.4-1.5 ppm.
The presence of halogens (bromine or iodine) in the heterocyclic ring permit the introduction of O-, N-,
and C-nucleophiles. The study [2] described the synthesis of 8-iodo[1,6]naphthyridines via the cyclization of
2-ethynyl-3-iminopyridines in the presence of iodine monochloride. The introduction of halogens into an
already prepared [1,6]naphthyridine can theoretically occur at positions 3 and 8.
We have found that bromination of compound 7 using N-bromosuccinimide in acetic acid gives the
8-bromo-7-piperidyl[1,6]naphthyridine 12 despite the presence of a bulky substituent in an ortho position.
Br
N
N
N
NBS
+
N
N
N
N
Br
N
Br
13
N
Boc
Boc
Boc
7
12
1055