1 For the review: (a) C. Jia, T. Kitamura and Y. Fujiwara, Acc.
Chem. Res., 2001, 34, 633; (b) F. Kakiuchi and N. Chatani, Adv.
Synth. Catal., 2003, 345, 1077; (c) M. Bandini, E. Emer,
S. Tommasi and A. Umani-Ronchi, Eur. J. Org. Chem., 2006,
3527; (d) T. Kitamura, Eur. J. Org. Chem., 2009, 1111.
2 (a) Y. Kido and M. Yamaguchi, J. Org. Chem., 1998, 63, 8086;
(b) Y. Kido, S. Yoshimura, M. Yamaguchi and T. Uchimaru, Bull.
Chem. Soc. Jpn., 1999, 72, 1445; (c) N. Chatani, H. Inoue, T. Ikeda
and S. Murai, J. Org. Chem., 2000, 65, 4913; (d) T. Tsuchimoto,
T. Maeda, E. Shirakawa and Y. Kawakami, Chem. Commun.,
2000, 1573; (e) M. T. Reetz and K. Sommer, Eur. J. Org. Chem.,
2003, 3485; (f) V. Mamane, P. Hannen and A. Furstner,
¨
Chem.–Eur. J., 2004, 10, 4556; (g) C. Nevado and
A. M. Echavarren, Chem.–Eur. J., 2005, 11, 3155.
3 Very recently, hydroarylation of alkynes through oxidative
addition of C–H bonds on very electron-poor aryl rings with low
valent late transition metal catalysts were reported. Pd:
(a) N. Chernyak and V. Gevorgyan, J. Am. Chem. Soc., 2008,
130, 5636. Ni; (b) Y. Nakao, N. Kashihara, K. S. Kanyiva and
T. Hiyama, J. Am. Chem. Soc., 2008, 130, 16170; (c) K. S. Kanyiva,
Y. Nakao and T. Hiyama, Angew. Chem., Int. Ed., 2007, 46, 8872.
4 (a) K. Komeyama, T. Morimoto and K. Takaki, Angew. Chem.,
Int. Ed., 2006, 45, 2938; (b) K. Komeyama, T. Morimoto,
Y. Nakayama and K. Takaki, Tetrahedron Lett., 2007, 48, 3259;
(c) K. Komeyama, Y. Mieno, S. Yukawa, T. Morimoto and
K. Takaki, Chem. Lett., 2007, 36, 752; (d) K. Komeyama,
R. Igawa, T. Morimoto and K. Takaki, Chem. Lett., 2009, 38, 724.
5 Reactivities of various iron catalysts (yield of 2a, conversion of 1a):
Fe(BF4)3 (8%, 11%); Fe(ClO4)3 (2%, 45%); Fe(CF3CO2)3 (0%,
11%); and FeCl3 (4%, 30%). Lu and Campagne reported FeCl3-
catalyzed hydroarylation of alkynes with electron-rich arenes. See:
(a) R. Li, S. R. Wang and W. Lu, Org. Lett., 2007, 9, 2219;
(b) C. D. Zotto, J. Wehbe, D. Virieux and J.-M. Campagne,
Synlett, 2008, 2033. TfOH also provided 2a in only 20% yield
with complete consumption of 1a.
6 Yields of 2a using various solvents: 1,2-dichloroethane (85%) 4
nitromethane (70%) c toluene (11%) 4 acetonitrile (9%) 4
1,4-dioxane (trace).
7 Treatment of 1t with FeCl3 (10 mol%) provided a complex
mixture, in which a negligible amount of 2t was formed (o5%
yield).
8 Exact structure of 4e was determined by X-ray analysis.
9 The vinyl proton of 1,2-dihydroquinoline 2b was deuterated in the
presence of D2O (1 equiv.) under the similar conditions (eqn (4)).
In eqn (3), 2b-d4 could be afforded by the reaction of 2b-d5 and
contaminated water
Scheme 1 Plausible reaction mechanism of cationic-iron catalyzed
intramolecular alkyne-hydroarylation.
iron-arene complexes during the reaction. Studies on details of
mechanistic aspects and extension of this protocol are in
progress.
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology of Japan. K.K. acknowledges
financial supports from Kinki Invention Center and Furukawa
technical foundation. Finally, we thank Dr H. Fukuoka for
X-ray analysis of 4e.
Notes and references
z General procedure for hydroarylation of 1a: In a 20 mL Schlenk tube,
a mixture of 1a (60.0 mg, 0.15 mmol), Fe(OTf)3 (7.5 mg, 15 mmmol),
and DCE (0.5 mL) was heated at 80 1C for 3 h. After cooling to room
temperature, the reaction mixture was passed through a short silica gel
column with diethyl ether, and then concentrated in vacuo. The
obtained crude product was purified by column chromatography with
hexane/ethyl acetate (5 : 1) to afford 6-cyano-4-tolyl-1-tosyl-1,2-
dihydroquinoline (2a) in 85% yield (51.0 mg). Isolated as a white solid
(Mp. 162.0–163.0 1C); Rf (SiO2, hexane:EtOAc = 5 : 1) = 0.28;
1H NMR (CDCl3, 270.05 MHz) d 2.32 (3H, s), 2.36 (3H, s), 4.57
(2H, d, J = 4.5 Hz), 5.67 (1H, t, J = 4.5 Hz), 6.59 (2H, d, J = 7.9 Hz),
7.10 (4H, d, J = 8.0 Hz), 7.17 (1H, d, J = 2.0 Hz), 7.36 (2H, d, J =
8.2 Hz), 7.58 (1H, dd, J = 8.2, 2.0 Hz), 7.89 (1H, d, J = 8.2 Hz);
13C NMR (CDCl3, 67.80 MHz) d 21.2, 21.4, 45.3, 110.0, 123.1,
127.3, 127.9, 128.2, 129.1, 129.4, 129.8, 131.4, 131.9, 133.8,
135.8, 137.3, 138.2, 139.6, 144.1, 146.7; HRMS m/z (EI): M+ calcd
for C24H20N2O2S, 400.1245; found 400.1235.
Crystal Data: Chemical formula and formula weight (M):
C20H12F2. Unit-cell dimensions (angstrom or pm, degrees) and
volume, with estimated standard deviations: a = 5.6736(8), b =
23.503(3), c = 10.7482(17), beta = 107.425(5). Temperature: 296.1.
Crystal system: monoclinic. Space group symbol (if non-standard
setting give related standard setting): P121/n1. No. of formula units
in unit cell (Z): 4. Number of reflections measured: 13 109 and number
of independent reflections: 3137. Rint: 0.036. Final R values (and
whether quoted for all or observed data): 0.0335. CCDC no.: 750245.
10 (a) D. Astruc, Tetrahedron, 1983, 39, 4027; (b) S. Ohta, Y. Ohki,
Y. Ikagawa, R. Suizu and K. Tatsumi, J. Organomet. Chem., 2007,
692, 4792–4799.
11 T. J. J. Muller, M. Ansorge and H. J. Lindner, Chem. Ber., 1996,
129, 1433.
¨
ꢁc
This journal is The Royal Society of Chemistry 2010
1750 | Chem. Commun., 2010, 46, 1748–1750