Journal of the American Chemical Society
Page 4 of 6
Photoredox Catalysis with Transition Metal Complexes: Applications
energy level from enamine intermediates, alkenes, carbonyls,
halides, acetic acids to amines etc. for C-C, C-O and C-N
formations. The potential broad application of this cost-effective,
easily-prepared, highly-efficient and band-tunable hybrid halide
perovskites may bring in new insights in photocatalysis of organic
reactions.
in Organic Synthesis. Chem. Rev. 2013, 113, 5322-5363.
(6) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan,
D. W. C. The Merger of Transition Metal and Photocatalysis. Nat. Rev.
Chem. 2017, 1, 0052.
(7) Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem.
Rev. 2016, 116, 10075-10166.
1
2
3
4
5
6
7
8
(8) Caputo, J. A.; Frenette, L. C.; Zhao, N.; Sowers, K. L.; Krauss, T. D.;
Weix, D. General and Efficient C–C Bond Forming Photoredox
Catalysis with Semiconductor Quantum Dots. J. Am. Chem. Soc. 2017,
139, 4250-4253.
(9) Zhang, Z.; Edme, K.; Lian, S.; Weiss, E. A. Enhancing the Rate of
Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the
Composition of the Dot’s Ligand Shell. J. Am. Chem. Soc. 2017, 139,
4246-4249.
ASSOCIATED CONTENT
Supporting Information
This material is available free of charge via the Internet at
S1-S3, synthesis procedures, and 1H and 13C NMR spectra.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Zhao, Y.; Zhu, K. Organic–Inorganic Hybrid Lead Halide
Perovskites for Optoelectronic and Electronic Applications. Chem. Soc.
Rev. 2016, 45, 655-689.
(11) Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural
Versatility for Functional Materials Design. Chem. Rev. 2016, 116,
4558-4596.
AUTHOR INFORMATION
Corresponding Author
ORCID
(12) Best Research-Cell Efficiencies Chart
–
NREL. https://
July 17, 2018)
(13) Manser
, J. S.; Christians, J. A.; Kamat, P. V. Intriguing
Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev.
2016, 116, 12956-13008.
Notes
(14) You, Y.-M; Liao, W.-Q.; Zhao, D.; Ye, H.-Y.; Zhang, Y.; Zhou, Q.;
Niu, X.; Wang, J.; Li, P.-F.; Fu, D.-W.; Wang, Z.; Gao, S.; Yang, K.;
Liu, J.-M.; Li, J.; Yan, Y.; Xiong, R.-G. An Organic-Inorganic
Perovskite Ferroelectric with Large Piezoelectric Response. Science
2017, 357, 306-309.
(15) Dou, L.; Yang, Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y.
Solution-Processed Hybrid Perovskite Photodetectors with High
Detectivity. Nat. Commun. 2014, 5, 5404.
(16) Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.;
Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S.; Im, S. H.; Friend, R.
H.; Lee, T.-W. Overcoming the Electroluminescence Efficiency
Limitations of Perovskite Light-Emitting Diodes. Science 2015, 350,
1222-1225.
(17) Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson,
M. V.; Trinh, M. T.; Jin, S.; Zhu, X.-Y. Lead Halide Perovskite
Nanowire Lasers with Low Lasing Thresholds and High Quality
Factors. Nat. Mater. 2015, 14, 636-642.
(18) Senanayak, S. P.; Yang, B.; Thomas, T. H.; Giesbrecht, N.; Huang,
W.; Gann, E.; Nair, B.; Goedel, K.; Guha, S.; Moya, X.; McNeill, C. R.;
Docampo, P.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.
Understanding Charge Transport in Lead Iodide Perovskite Thin-Film
Field-Effect Transistors. Sci. Adv. 2017, 3, e1601935.
(19) Yang, Y.; Yang, M.; Moore, D. T.; Yan, Y.; Miller, E. M.; Zhu, K.;
Beard, M. C. Top and Bottom Surfaces Limit Carrier Lifetime in Lead
Iodide Provskite Films. Nat. Energy 2017, 2, 16207.
(20) Yang, Y.; Ostrowski, D. P.; France, R. M.; Zhu, K.; Lagemaat, J. V.
D.; Luther, J. M., Beard, M. C. Observation of a Hot-Phonon
Bottleneck in Lead-Iodide Perovskites. Nat. Photon. 2016, 10, 53-59.
(21) Yang, Y.; Yang, M.; Li, Z.; Crisp, R.; Zhu, K.; Beard, M. C.
Comparison of Recombination Dynamics in CH3NH3PbBr3 and
CH3NH3PbI3 Perovskite Films: Influence of Exciton Binding Energy. J.
Phys. Chem. Lett. 2015, 6, 4688-4692.
(22) Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang,
J. Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown
CH3NH3PbI3 Single Crystals. Science 2015, 347, 967-970.
The authors declare the following competing financial interest(s):
A provisional patent application has been filed on the perovskite
catalysts and their use in photocatalytic organic synthesis.
ACKNOWLEDGMENT
This work is supported by NSF under Chemical Catalysis
program, award 1764142 to YY. MCB acknowledges support as
part of the Center for Hybrid Organic Inorganic Semiconductors
for Energy (CHOISE) an Energy Frontier Research Center funded
by the Office of Science, Office of Basic Energy Sciences within
the US Department of Energy. Part of this work was authored by
Alliance for Sustainable Energy, LLC, the manager and operator
of the National Renewable Energy Laboratory under Contract No.
DE-AC36-08GO28308. The views expressed in the article do not
necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by
accepting the article for publication, acknowledges that the U.S.
Government retains
a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of
this work, or allow others to do so, for U.S. Government
purposes. We also thank M. Uddin and W. Chen for help with
XRD measurements.
REFERENCES
(1) Ravelli, D.; Protti, S.; Fagnoni, M. Carbon-Carbon Bond Forming
Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116,
9850-9913.
(2) White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.;
Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev,
E.; Bocarsly, A. B. Light-Driven Heterogeneous Reduction of Carbon
Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, 115,
12888-12935.
(3) Nicewicz, D. A.; MacMillan, D. W. C. Merging Photoredox Catalysis
with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes.
Science 2008, 322, 77-80.
(4) Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C.
Photoredox Activation for the Direct β-Arylation of Ketones and
Aldehydes. Science 2013, 339, 1593-1596.
(23) Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.;
Mhaisalkar, S.; Sum, T. C. Long-Range Balanced Electron- and Hole-
Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013,
342, 344-347.
(24) Yang, Y.; Yan, Y.; Yang, M.; Choi, S.; Zhu, K.; Luther, J. M.; Beard,
M. C. Low Surface Recombination Velocity in Solution-Grown
CH3NH3PbBr3 Perovskite Single Crystal. Nat. Commun. 2015, 6, 7961.
(25) Wang, L.; Wang, H.; Wagner, M.; Yan, Y.; Jakob, D. S.; Xu, X. G.
Nanoscale Simultaneous Chemical and Mechanical Imaging via Peak
(5) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light
4
ACS Paragon Plus Environment