Uncatalyzed Three-Component Synthesis of α-Hydrazido Phosphonates
1992, 33, 6625–6628; c) A. Peymen, W. Stahl, K. Wagner, D.
Ruppert, K.-H. Budt, Bioorg. Med. Chem. Lett. 1994, 4, 2601–
2604.
For a review, see: V. P. Kukhar, V. A. Solodenko, Russ. Chem.
Rev. 1987, 56, 856–874.
For a recent review, see: M. Ordóñez, H. Rojas-Cabrera, C.
Cativiela, Tetrahedron 2009, 65, 17–49.
Multicomponent Synthesis of α-Hydrazido Phosphonates 8a–h, 9 and
10: To a solution of 12–14 (1.1 mmol) in toluene (2 mL) was added
11a–h (1 mmol). After 0.5 h, diphenyl phosphite (4e) (1.5 mmol)
was slowly added in toluene (2 mL). The mixture was stirred at
room temperature until total consumption of the hydrazone. After
the corresponding reaction time (see Table 3), the crude product
was directly isolated by chromatography on silica gel (hexane/
EtOAc, 7:3) to afford products 8a–h, 9 and 10. The amount of
reagents, yields, and spectra for 8a–h, 9 and 10 are reported in the
Supporting Information.
[10]
[11]
[12]
For some examples of hydrophosphonylation of imines cata-
lyzed by Lewis acids, see: a) S. Lashat, H. Kunz, Synthesis
1992, 90–95; b) B. C. Ranu, A. Hajra, J. Jana, Org. Lett. 1999,
1, 1141–1143; c) K. Manabe, S. Kobayashi, Chem. Commun.
2000, 669–670; d) B. Kaboudin, R. Nazari, Tetrahedron Lett.
2001, 42, 8211–8215; e) F. Xu, Y. Luo, M. Deng, Q. Shen, Eur.
J. Org. Chem. 2003, 4728–4730; f) S. Kudrimoti, V. R. Bom-
mena, Tetrahedron Lett. 2005, 46, 1209–1210.
For reviews about N-acylhydrazones as versatile electrophiles,
see: a) M. Sugiura, S. Kobayashi, Angew. Chem. Int. Ed. 2005,
44, 5176–5186; b) G. K. Friestad, Eur. J. Org. Chem. 2005,
3157–3172; c) S. Kobayashi, M. Sugiura, C. Ogawa, Adv.
Synth. Catal. 2004, 346, 1023–1034.
For the only reported example, see: N. Rabasso, A. Fadel, Syn-
thesis 2008, 2353–2362.
a) C. Yuan, S. Chen, R. Xie, H. Feng, L. Maier, Phosphorus
Sulfur Silicon Relat. Elem. 1995, 106, 115–123; b) C. Li, C.
Yuan, Synthesis 1996, 507–510; c) M. Kaname, K. Yoshinaga,
Y. Arakawa, S. Yoshifuji, Tetrahedron Lett. 1999, 40, 7993–
7994.
Organocatalytic Enantioselective Hydrophosphonylation of 5a: To a
solution of 5a (0.2 mmol, 47 mg) and Cinchonidine (0.04 mmol,
11.8 mg) in toluene (0.5 mL), was added 4e (0.3 mmol). The mix-
ture was stirred at room temperature. After 72 h, the crude product
was directly isolated by chromatography on silica gel (hexane/
EtOAc, 7:3) to afford product 8a in a 62% yield and 56% ee.
[α]2D2 = +54.5 (c = 0.835, CHCl3, 56% ee). HPLC setup: Daicel
Chiralpak IA column (hexane/EtOAc, 7:3, flow rate 1 mL/min, UV
254.4 nm, τminor = 16.5 min, τmajor = 20.0 min).
[13]
[14]
[15]
Supporting Information (see footnote on the first page of this arti-
cle): Detailed experimental procedures and characterization data
1
for compounds 2, 3, 5a–e, 6, 7, 8a–h, 9 and 10 and H NMR, 13C
NMR and HRMS spectra for all new compounds are presented.
[16]
[17]
S. Inokawa, Y. Nakatsukasa, M. Horisaki, M. Yamashita, H.
Yoshida, T. Ogata, Synthesis 1977, 179–180.
a) M. Yamashita, J. Takeuchi, K. Nakatani, T. Oshikawa, Bull.
Chem. Soc. Jpn. 1985, 58, 377–378; b) H. Yamamoto, T.
Hanaya, H. Kawamoto, S. Inokawa, Chem. Lett. 1989, 121–
124.
a) A. Heydari, A. Javidan, M. Schaffie, Tetrahedron Lett. 2001,
42, 8071–8073; b) A. Heydari, M. Mehrdad, M. Schaffie, M. S.
Abdolrezaie, R. Hajinassirei, Chem. Lett. 2002, 1146–1147; c)
A. Heydari, A. Arefi, Catal. Commun. 2007, 8, 1023–1026.
P. Diel, L. Maier, Eur. Pat. Appl. EP 1985, 143078; [Chem.
Abstr. 1985, 103, 215544m].
For a plausible mechanism of activation of N,N-dialkylhydra-
zones, see: E. Marqués-López, R. P. Herrera, R. Fernández,
J. M. Lassaletta, Eur. J. Org. Chem. 2008, 3457–3460.
For reviews about aldehyde N,N-dialkylhydrazones as neutral
acyl anion equivalents, see: a) R. Fernández, J. M. Lassaletta,
Synlett 2000, 1228–1240; b) R. Brehme, D. Enders, R.
Fernández, J. M. Lassaletta, Eur. J. Org. Chem. 2007, 5629–
5660, and references therein.
Acknowledgments
We thank the High Council of Scientific Investigation (CSIC) (PIE-
200880I260), the Ministry of Science and Innovation (MICINN,
Madrid, Spain) (Project CTQ2009-09028) and the Government of
Aragón (Zaragoza, Spain) (Project PI064/09) for financial support
of our research. We are also grateful to Dr. Eugenia Marqués-
López, Prof. Dr. Tomás Tejero and Prof. Dr. Pedro Merino for help
and encouragement.
[18]
[19]
[20]
[1] A. N. Pudovik, I. V. Konovalova, Synthesis 1979, 81–96.
[2] For a recent review on this topic, see: P. Merino, E. Marqués-
López, R. P. Herrera, Adv. Synth. Catal. 2008, 350, 1195–1208,
and references cited therein.
[3] For selected examples, see: a) F. R. Atherton, M. J. Hall, C. H.
Hassall, S. W. Holmes, R. W. Lambert, J. Lloyd, P. S. Ringrose,
Antimicrob. Agents Chemother. 1980, 18, 897–905; b) T. Kamet-
ani, K. Kigasawa, M. Hiiragi, K. Wakisaka, S. Haga, H. Sugi,
H. Tanigawa, Y. Suzuki, K. Fukawa, O. Irino, O. Saita, S. Yam-
abe, Heterocycles 1981, 16, 1205–1242; c) F. R. Atherton, C. H.
Hassall, R. W. Lambert, J. Med. Chem. 1986, 29, 29–40.
[4] a) I. A. Natchev, Liebigs Ann. Chem. 1988, 861–867; b) M. K.
Mao, J. E. Franz, Synthesis 1991, 920–922.
[21]
[22]
For a review, see: D. F. Wiemer, Tetrahedron 1997, 53, 16609–
16644.
[23]
[24]
B. Springs, P. Haake, J. Org. Chem. 1977, 42, 472–474.
For the pKa values of different phosphorus nucleophiles, see:
J.-N. Li, L. Liu, Y. Fu, Q.-X. Guo, Tetrahedron 2006, 62, 4453–
4462.
For reviews, see: a) L. F. Tietze, U. Beifuss, Angew. Chem. Int.
Ed. Engl. 1993, 32, 131–163; b) D. J. Ramón, M. Yus, Angew.
Chem. Int. Ed. 2005, 44, 1602–1634; c) G. Guillena, G. D. J.
Ramón, M. Yus, Tetrahedron: Asymmetry 2007, 18, 693–700.
Unfortunately, the use of benzaldehyde or cinnamaldehyde did
not afford the final products after three days of reaction and
under the same reactions conditions.
For an example of selective cleavage of the hydrazine N–N
bond by using SmI2, see the Supporting Information. For a
review about this specific reactivity with SmI2, see: K. Gopa-
laiah, H. B. Kagan, New J. Chem. 2008, 32, 607–637.
The same moderate results were obtained when Et3N (20 mol-
%) was used as catalyst; 13 (71%) and 14 (63%).
CCDC-753258 (8b) and -753259 (8c) contain the supplemen-
tary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The
[25]
[5] J. Emsley, D. Hall, The Chemistry of Phosphorus, Harper and
Row, London, 1976, p. 494.
[6] L. Maier, H. Spörri, Phosphorus Sulfur Silicon Relat. Elem.
1991, 61, 69–75.
[26]
[27]
[7] J. Huang, R. Chen, Heteroat. Chem. 2000, 11, 480–492.
[8] For selected examples, see: a) J. Bird, R. C. De Mello, G. P.
Harper, D. J. Hunter, E. H. Karran, R. E. Markwell, A. J.
Miles-Williams, S. S. Rahman, R. W. Ward, J. Med. Chem.
1994, 37, 158–169; b) J. L. Goulet, J. F. Kinneary, P. L. Durette,
R. L. Stein, R. K. Harrison, M. Izquierdo-Martin, D. W. Kuo,
T.-Y. Lin, W. K. Hagmann, Bioorg. Med. Chem. Lett. 1994, 4,
1221–1224. For a review, see: c) P. Kafarski, B. Lejczak, Phos-
phorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215.
[9] a) A. Paymen, K.-H. Budt, J. Spanig, B. Stowasser, D. Ruppert,
Tetrahedron Lett. 1992, 33, 4549–4552; b) B. Stowasser, K.-H.
Budt, L. Jian-Qi, A. Paymen, D. Ruppert, Tetrahedron Lett.
[28]
[29]
Eur. J. Org. Chem. 2010, 1450–1454
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1453