Article
Macromolecules, Vol. 43, No. 12, 2010 5193
(101 mg, 81%); mp 221-222 °C: IR (KBr): ν 3056, 2955, 2928,
2857, 1702, 1603, 1523, 1499, 1474, 1376, 1318, 1272, 1177, 1098,
the residue which was analyzed by 1H NMR for end-group
analysis.14
1
934, 834, 810, 768, 721, 694, 673 cm-1. H NMR (400 MHz,
AFM Characterization. TM-AFM measurements were car-
ried out with a NanoScope IIIa controller (Veeco Metrology
Group/Digital Instruments, Santa Barbara, CA) using a 10 μm
scanner. The nominal curvature and the force constant for the
cantilevers (NCHR, NanoWorld, Switzerland) were 10 nm and
42 nN/m, respectively. The sample, after being drop-cast with an
aliquot of 6c (50 μL, 100 nM in CH2Cl2) on HOPG, was sub-
jected to vacuum-drying and then imaged in a dry-N2(g) purged
Plexiglas to minimize the effect of humidity on imaging.
Time-Resolved Fluorescence Experiments. A mode-locked Ti:
sapphire laser (wavelength: 840 nm; repetition rate: 76 MHz;
pulse width: <200 fs) passed through an optical parametric
amplifier to produce 280 nm pulse laser. The fluorescence of
sample was reflected by a grating (150 g/mm; BLZ: 500 nm) and
detected by an optically triggered streak camera (Hamamatsu
C5680) with a time resolution of about 0.3 ps. The sample was
prepared with 1ꢀ10-5 M concentration in CH2Cl2 and using an
ultra-microcuvette with 1 mm path length to maintain the exci-
tation at the same time. The signal was collected for 20 times to
decrease signal-to-noise ratio.
CDCl3): δ 0.98 (t, J = 7.2 Hz, 9 H), 1.04 (t, J = 7.6 Hz, 9 H),
1.44-1.82 (m, 30 H), 2.74 (t, J=7.6 Hz, 6 H), 2.89 (t, J=7.6 Hz,
6 H), 2.94-3.02 (m, 12 H), 3.04-3.11 (m, 6 H), 3.25-3.33 (m,
6 H), 5.31 (s, 6 H), 6.16 (s, 6 H), 6.39 (d, J=8.8 Hz, 6 H), 6.67 (s,
3 H), 6.78 (s, 3 H), 7.44 (d, J=7.8 Hz, 6 H), 7.71-7.76 (m, 12 H),
7.83 (d, J=8.4 Hz, 6 H), 7.91 (d, J=8.8 Hz, 6 H), 7.99 (s, 3 H).
13C NMR (100 MHz, CDCl3): δ 14.1, 14.3, 22.8, 23.0, 26.1, 26.2,
32.1, 32.4, 45.4, 46.7, 50.5, 52.1, 65.6, 109.4, 109.6, 110.8, 116.0,
123.6, 123.7, 124.4, 124.8, 125.4, 128.2, 128.8, 130.2, 130.3 131.3,
132.1 135.6, 147.6, 150.3, 151.5, 151.7, 166.7. HRMS (FABþ)
m/z calcd for C141H141O12N3: 2068.0515. Found: 2068.0513.
Synthesis of 6a. Under argon atmosphere, a solution of (Cy3P)2-
Cl2Ru=CHPh (41.0 mg, 0.05 mmol) in CH2Cl2 (2 mL) was added
to 5a (184 mg, 0.166 mmol) in CH2Cl2 (10 mL) and stirred at rt for
3 h. The mixture was quenched with ethyl vinyl ether (2 mL). The
mixture was concentrated and redissolved in CH2Cl2 (1 mL). The
solution was poured into MeOH (20 mL). The resulting solid was
collected by centrifuge to give 6a (156 mg, 85%). 1H NMR (300
MHz, CDCl3): δ 1.68-2.10 (br, 6 H), 2.50-3.50 (br, 24 H), 5.4
(brs, 12 H), 6.57 (brs, 6 H), 7.50-7.80 (br, 15 H), 7.97 (brs, 6 H).
13C NMR (75 MHz, CDCl3): δ 44.52, 45.71, 46.29, 46.91, 65.87,
111.56, 116.82, 126.05, 127.42, 128.47, 131.45, 136.31, 140.76, 141.97,
150.87, 150.84, 166.50. IR (KBr, cm-1): 3027, 2933, 2852, 1705,
1605, 1521, 1374, 1270, 1178, 1096, 966, 824, 767, 697. GPC: PDI=
1.61, Mn =13 000, Mw =21 000.
Acknowledgment. We thank the National Science Council
and the National Taiwan University for support. K.W.Y. thanks
the National Science Council for undergraduate research. T.Y.L.
and J.X. thank the Shanghai Institute of Organic Chemistry for
the support.
Synthesis of 6b. Under a nitrogen atmosphere, a solution of
(Cy3P)2Cl2Ru=CHPh (8.2 mg, 0.010 mmol) in CH2Cl2 (1 mL)
was added to 5b (30 mg, 0.02 mmol) in CH2Cl2 (10 mL) and
stirred at rt for 4 h. The mixture was quenched with ethyl vinyl
ether (2 mL). The mixture was concentrated and redissolved in
CH2Cl2 (1 mL). The solution was poured into MeOH (20 mL).
The resulting solid was collected by centrifuge to give 6b (20 mg,
66%). IR (KBr): ν 2953, 2930, 2857, 1720, 1606, 1523, 1497,
1479, 1453, 1433, 1376, 1271, 1178, 1096, 965, 934, 767 cm-1. 1H
NMR (400 MHz, CDCl3): δ 0.70-1.00 (br, 9H), 1.20-1.97 (br,
18H), 2.45-3.60 (br, 30H), 4.80-5.65 (br, 12 H), 6.30-6.80 (br,
9H), 7.30-8.20 (br, 21 H). 13C NMR (125 MHz, CDCl3): δ 4.0,
22.7, 25.9, 32.1, 37.5, 44.8, 46.7, 49.5, 65.7, 109.4, 111.4, 117.0,
123.8, 124.6, 126.1, 128.6, 130.5, 131.5, 135.7, 147.8, 151.0,
151.8, 166.7. Mn = 13 000, PDI= 1.82.
Supporting Information Available: 1H and 13C NMR spec-
tra of all new compounds (including end-group analysis for 7).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References and Notes
(1) A polymeric ladderphane is defined as multiple layers of planar
aromatic ring tethered by two or more tethering chains that are
part of the polymeric backbones. See: Chou, C.-M.; Lee, S.-L.;
Chen, C.-H.; Biju, A. T.; Wang, H.-W.; Wu, Y.-L.; Zhang, G.-F.;
Yang, K.-W.; Lim, T.-S.; Huang, M.-J.; Tsai, P.-Y.; Lin, K.-C.;
Huang, S.-L.; Chen, C.-h.; Luh, T.-Y. J. Am. Chem. Soc. 2009, 131,
12579.
Synthesis of 6c. Under a nitrogen atmosphere, a solution of
(Cy3P)2Cl2Ru=CHPh (11.0 mg, 0.013 mmol) in CH2Cl2 (1 mL)
was added to 5c (90 mg, 0.045 mmol) in CH2Cl2 (10 mL) and
stirred at rt for 4 h. The mixture was quenched with ethyl vinyl
ether (2 mL). The mixture was concentrated and redissolved in
CH2Cl2 (1 mL). The solution was poured into MeOH (20 mL).
The resulting solid was collected by centrifuge to give 6c (69 mg,
76%). IR (KBr): ν 2961, 2918, 2849, 1719, 1604, 1519, 1482,
1460, 1376, 1261, 1180, 1096, 1019, 964, 933, 861, 800, 662, 491
(2) (a) Yang, H.-C.; Lin, S.-Y.; Yang, H.-C.; Lin, C.-L.; Tsai, L.;
Huang, S.-L.; Chen, I-W. P.; Chen, C.-h.; Jin, B.-Y.; Luh, T.-Y.
Angew. Chem., Int. Ed. 2006, 45, 726. (b) Yang, H.-C.; Lin, S.-M.; Liu,
Y.-H.; Wang, Y.; Chen, M.-M.; Sheu, H.-S.; Tsou, D.-L.; Lin, C.-H.;
Luh, T.-Y. J. Organomet. Chem. 2006, 691, 3196–3200. (c) Lin, N.-T.;
Lin, S.-Y.; Lee, S.-L.; Chen, C.-h.; Hsu, C.-H.; Hwang, L.-P.; Xie, Z.-Y.;
Chen, C.-H.; Huang, S.-L.; Luh, T.-Y. Angew. Chem., Int. Ed. 2007,
46, 4481. (d) Lin, C.-L.; Yang, H.-C.; Lin, N.-T.; Hsu, I.-J.; Wang, Y.;
Luh, T.-Y. Chem. Commun. 2008, 4484. (e) Lin, N.-T.; Lee, S.-L.; Yu,
J.-Y.; Chen, C.-h.; Huang, S.-L.; Luh, T.-Y. Macromolecules 2009, 42,
6986. (f) Lee, S.-L.; Lin, N.-T.; Liao, W.-C.; Chen, C.-h.; Yang, H.-C.;
1
cm-1. H NMR (400 MHz, CDCl3): δ 0.70-1.15 (br, 18 H),
Luh, T.-Y. Chem. Eur. J. 2009, 15, 11594. (g) For a review, see: Luh,
;
1.20-1.97 (br, 30 H), 2.35-3.50 (br, 36 H), 4.80-5.75 (br, 12 H),
6.30-6.80 (br, 12 H), 7.30-8.05 (br, 27 H). 13C NMR (125
MHz, CDCl3): δ 13.9, 14.1, 22.6, 25.9, 31.9, 44.5, 46.3, 49.4,
65.8, 109.4, 111.5, 123.7, 124.6, 126.0, 128.6, 130.3, 131.5, 135.6,
147.5, 151.6, 166.6. Mn = 25 000, PDI= 1.61.
Methanolysis of 6a. Under an argon atmosphere, a mixture of
6a (90 mg, 0.08 mmol) in CHCl3 (20 mL) and 30% NaOMe in
MeOH (10 mL) was stirred at rt for 20 h. Dichloromethane and
water were added. The organic layer was separated and washed
with H2O, dried (MgSO4), and concentrated in vacuo. Ether
(15 mL) was then added dropwise, and the residue was collected
by centrifuge. The solid was washed several times with ether to
give 7 (51 mg, 77%). 1H NMR (300 MHz, CDCl3): δ 1.40 (br,
1 H), 1.81 (br, 1 H), 2.74 (br, 2 H), 2.91 (br, 2 H), 3.24 (br, 4 H),
3.82 (br, 3 H), 5.34 (br, 2 H), 6.49 (br, 2 H), 7.87 (br, 2 H).
Under the same conditions, methanolysis of 6a (15 g, 0.013
mmol) in CHCl3 (5 mL) and 30% NaOMe in MeOH (2 mL) gave
T.-Y.; Yang, H.-C.; Lin, N.-T.; Lin, S.-Y.; Lee, S.-L.; Chen, C.-h. Pure
Appl. Chem. 2008, 80, 819.
(3) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996,
118, 100. (b) Hamilton, J. G. In Handbook of Metathesis; Grubbs,
R. H., Ed.; Wiley-VCH: Weinheim, 2003; Vol. 3, p 143. (c) Slugovc, C.
Macromol. Rapid Commun. 2004, 25, 1283.
(4) (a) Lin, W.-Y.; Murugesh, M. G.; Sudhakar, S.; Yang, H.-C.; Tai,
H.-C.; Chang, C.-S.; Liu, Y.-H.; Wang, Y.; Chen, I-W. P.; Chen,
C.-h.; Luh, T.-Y. Chem. Eur. J. 2006, 12, 324. (b) Lin, W.-Y.; Wang,
;
H.-W.; Liu, Z.-C.; Xu, J.; Chen, C.-W.; Yang, Y.-C.; Huang, S.-L.; Yang,
H.-C.; Luh, T.-Y. Chem. Asian J. 2007, 2, 764. (c) Sattigeri, J. A.;
;
Shiau, C.-W.; Hsu, C. C.; Yeh, F. F.; Liou, S.; Jin, B.-Y.; Luh, T.-Y.
J. Am. Chem. Soc. 1999, 121, 1607. (d) Wang, H.-W.; Liu, Z.-C.;
Chen, C.-H.; Lim, T.-S.; Fann, W.; Chao, C.-G.; Yu, J.-Y.; Lee, S.-L.;
Chen, C.-h.; Huang, S.-L.; Luh, T.-Y. Chem. Eur. J. 2009, 15, 5719.
;
(5) (a) Harris, C. M.; McKenzie, E. D. J. Chem. Soc. A 1969, 746.
(b) Baxter, P.; Lehn, J.-M.; DeCian, A.; Fischer, J. Angew. Chem., Int.
Ed. 1993, 32, 69.