Table 2 Kinetic resolution of cyclic trans-1,2-diols
Sterically hindered acids (3e) and (3f) react more slowly;
substituted benzoic acids generally react quite sluggishly,
owing to the increased stability of the intermediate acylium
ions. This is apparent from a comparison of the conversion
times for 3h–j. As found for the use of isobutyric anhydride,13
isobutyric acid 3d leads to the highest ee for 4.
n
t/h
C (%)b
ee (%)
Sc
We have shown here that the much utilized Steglich
esterification protocol can be readily adapted to the enantio-
selective acylation of 1,2-trans-cycloalkane diols utilizing a
short peptide catalyst with a catalytically active His-moiety
and a broad variety of carboxylic acids. The mechanistic
details are currently being elucidated and will be recorded
in full in due course. The adaptation of this strategy to
monoalcohols and possibly other nucleophiles will require
the development of other catalysts, for which the current
platform is a highly promising starting point.
1
3
4
10
16
18
76
55
55
8b, 32
9b, 82
10b, 81
5 >99
6 >99
7 >99
11
>50
>50
a
b
= Diimide, here: DIC. Conversion. S-values (selectivity
c
DI
factors) determined by the method of Kagan and Fiaud.12
as observed to some extent in the reaction with DMAP, does
not occur. The optimized conditions were applied to the
kinetic resolution of other cyclic trans-1,2-diols (Table 2).
The selectivities remained high in all cases and compare very
well to the analogous reaction of the diols with the anhydrides,
which can be rationalized on the basis of the uncatalyzed rapid
anhydride formation.
This work was supported by the Deutsche Forschungsge-
meinschaft (SPP 1179) and the Alexander-von-Humboldt
Foundation (Fellowship to RH).
Notes and references
The next step was the variation of the acid to probe the
generality and utility of this esterification protocol (Table 3).
Apart from electron-donor substituted benzoic acids, the
present protocol is of broad utility. Phenylacetic acid (3g)
was the most reactive, and the kinetic resolution was complete
after only two hours, which is about five times faster than the
acetylation.
1 J. Otera and J. Nishikido, Esterification: Methods, Reactions,
and Applications, Wiley-VCH, Weinheim, 2nd edn, 2009.
2 D. R. Brady and J. L. Gaylor, J. Lipid Res., 1971, 12, 270.
3 (a) B. Neises and W. Steglich, Angew. Chem., Int. Ed. Engl., 1978,
17, 522; (b) W. Steglich and G. Hofle, Angew. Chem., Int. Ed. Engl.,
¨
1969, 8, 981; (c) G. Hofle and W. Steglich, Synthesis, 1972, 619;
¨
(d) G. Hofle, W. Steglich and H. Vorbruggen, Angew. Chem., Int.
¨
Ed. Engl., 1978, 17, 569; (e) V. Lutz, J. Glatthaar, C. Wurtele,
¨
¨
M. Serafin, H. Hausmann and P. R. Schreiner, Chem.–Eur. J.,
2009, 15, 8548.
4 (a) G. Doleschall and K. Lempert, Tetrahedron Lett., 1963, 4,
1195; (b) R. Shelkov, M. Nahmany and A. Melman, Org. Biomol.
Chem., 2004, 2, 397.
Table 3 Kinetic resolution of trans-cyclohexane-1,2-diols (2) using
various acids
5 (a) J. Rebek and D. Feitler, J. Am. Chem. Soc., 1973, 95, 4052;
(b) F. M. F. Chen, K. Kuroda and N. L. Benoiton, Synthesis, 1978,
928; (c) E. Coulbeck and J. Eames, Tetrahedron: Asymmetry, 2009,
20, 635; (d) X. Yang and V. B. Birman, Adv. Synth. Catal., 2009,
351, 2301.
6 C. E. Muller, L. Wanka, K. Jewell and P. R. Schreiner, Angew.
¨
Chem., Int. Ed., 2008, 47, 6180.
Carboxylic acid
ee (%)
7 (a) G. C. Fu, Acc. Chem. Res., 2000, 33, 412; (b) T. Sano and
T. Oriyama, J. Synth. Org. Chem. Jpn., 1999, 57, 598;
(c) A. C. Spivey, A. Maddaford and A. J. Redgrave, Org. Prep.
Proced. Int., 2000, 32, 331; (d) J. M. Brunel and G. Buono, in New
Aspects in Phosphorus Chemistry I, Springer-Verlag Berlin, Berlin,
2002, p. 79; (e) J. L. Methot and W. R. Roush, Adv. Synth. Catal.,
2004, 346, 1035; (f) G. C. Fu, Acc. Chem. Res., 2004, 37, 542;
(g) S. A. Shaw, P. Aleman, J. Christy, J. W. Kampf, P. Va and
E. Vedejs, J. Am. Chem. Soc., 2006, 128, 925; (h) N. Su,
F. L. Zhang and Y. F. Gong, Chin. J. Org. Chem., 2007, 27,
1345; (i) R. P. Wurz, Chem. Rev., 2007, 107, 5570; (j) T. Kawabata
and T. Furuta, Chem. Lett., 2009, 38, 640.
8 (a) I. Shiina, K. Nakata, K. Ono, M. Sugimoto and A. Sekiguchi,
Chem.–Eur. J., 2010, 16, 167; (b) I. Shiina, K. Nakata and
Y. Onda, Eur. J. Org. Chem., 2008, 5887; (c) K. Ishihara,
Y. Kosugi, S. Umemura and A. Sakakura, Org. Lett., 2008, 10,
3191; (d) I. Shiina and K. Nakata, Tetrahedron Lett., 2007, 48,
8314.
4
2
t/h
C (%)b
Sf
3a
3b
HCOOH
CH3COOH
7
15
15
67d
55
41
83
82
83
>99
98
6
>50
45
(51, 39)c
3c
3d
15
41
55
(48, 43)c
83
90
>99
98
>50
>50
24
45
48
54
85
90
86
>99
98
>50
>50
14
(55, 41)c
4e
3e
4
3f
48
60e
57
85
9
3g
PhCH2COOH
2
2
48
48
48
57
(54, 41)c
38e
75
82
60
60
>99
>99
36
84
3
>50
>50
6
10
n. d.
9 (a) E. R. Jarvo and S. J. Miller, Tetrahedron, 2002, 58, 2481;
(b) E. A. C. Davie, S. M. Mennen, Y. J. Xu and S. J. Miller, Chem.
Rev., 2007, 107, 5759.
3h
3i
3j
PhCOOH
p-Cl-PhCOOH
p-CH3O-PhCOOH
58e
n. d.e
n. d.
10 C. E. Muller, D. Zell and P. R. Schreiner, Chem.–Eur. J., 2009, 15,
9647.
¨
a
b
DI = Diimide, here: DIC. Conversion determined by chiral GC.
c
11 C. B. Shinisha and R. B. Sunoj, Org. Lett., 2009, 11, 3242.
12 H. B. Kagan and J. C. Fiaud, Top. Stereochem., 1988, 18, 249.
13 (a) S. Yamada, T. Misono, Y. Iwai, A. Masumizu and
Y. Akiyama, J. Org. Chem., 2006, 71, 6872; (b) A. C. Spivey and
S. Arseniyadis, Angew. Chem., Int. Ed., 2004, 43, 5436.
Preparative reaction at 1 mmol scale with 1 mol% of 1, isolated
d
product yields of 2 and 4 in %. Doubled solvent volume. 2 equiv.
e
f
of DIC used. S-values (selectivity factors) determined by the method
of Kagan and Fiaud.12
ꢁc
This journal is The Royal Society of Chemistry 2010
2690 | Chem. Commun., 2010, 46, 2689–2690