pubs.acs.org/joc
4-aryl-2-quinolinone derivatives, including several natural
Palladium-Catalyzed Intramolecular Amidation of
C(sp2)-H Bonds: Synthesis of 4-Aryl-2-quinolinones
products1 and compounds that are currently in clinical
trials,2 have attracted much attention in recent years.1-4
Moreover, 2-quinolinones serve as valuable synthetic inter-
mediates because they can be easily transformed into 2-
(pseudo)haloquinolines (e.g., 2-Cl, 2-OTf), which can under-
go further functionalization, such as nucleophilic aroma-
tic substitutions and Pd-catalyzed coupling reactions.5
Although many strategies for the construction of the 2-qui-
Kiyofumi Inamoto,* Tadataka Saito, Kou Hiroya, and
Takayuki Doi*
Graduate School of Pharmaceutical Sciences,
Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku,
Sendai 980-8578, Japan
nolinone ring rely on cyclization approaches,6,7 including
6a
inamoto@mail.pharm.tohoku.ac.jp; doi_taka@mail.pharm.
tohoku.ac.jp
€
classic base-catalyzed Friedlander and acid-catalyzed
Knorr synthesis,6b few synthetic methods based on transi-
tion-metal catalysis exist. However, such methods would
provide a more facile, versatile, and practical route.
Received March 24, 2010
Several research groups recently demonstrated the suc-
cessful use of a palladium catalyst in 2-quinolinone
synthesis.8-10 Larock et al. reported the carbonylative an-
nulation of alkynes with 2-iodoanilines and CO in the
presence of Pd(OAc)2, leading to 3,4-disubstituted 2-quino-
linones.8e More recently, Cacchi, Fabrizi, and co-workers
developed a protocol for preparing 4-aryl-2-quinolinones
from 2-bromocinnamamides and aryl iodides through a
tandem-type Heck reaction/Buchwald-Hartwig amination
sequence.8c Willis’ group also reported a one-pot formation
of 2-quinolinones from 2-(2-haloalkenyl)aryl halides and
A catalytic synthetic approach for the synthesis of 2-qui-
nolinone compounds through a Pd-catalyzed C(sp2)-H
functionalization/intramolecular amidation sequence is
described. The cyclization process efficiently proceeds in
the presence of a catalytic amount of PdCl2 and Cu(OAc)2
under an O2 atmosphere, providing practical access to a
range of variously substituted 4-aryl-2-quinolinones.
(4) (a) Cheng, P.; Zhang, Q.; Ma, Y.-B.; Jiang, Z.-Y.; Zhang, X.-M.;
Zhang, F.-X.; Chen, J.-J. Bioorg. Med. Chem. Lett. 2008, 18, 3787–3789. (b)
Wall, M. J.; Chen, J.; Meegalla, S.; Ballentine, S. K.; Wilson, K. J.;
DesJarlais, R. L.; Schubert, C.; Chaikin, M. A.; Crysler, C.; Petrounia,
I. P.; Donatelli, R. R.; Yurkow, E. J.; Boczon, L.; Mazzulla, M.; Player,
M. R.; Patch, R. J.; Manthey, C. L.; Molloy, C.; Tomczuk, B.; Illig, C. R.
Bioorg. Med. Chem. Lett. 2008, 18, 2097–2102. (c) Peifer, C.; Urich, R.;
€
Schattel, V.; Abadleh, M.; Rottig, M.; Kohlbacher, O.; Laufer, S. Bioorg.
Med. Chem. Lett. 2008, 18, 1431–1435. (d) Mederski, W. W. K. R.; Osswald,
M.; Dorsch, D.; Christadler, M.; Schmitges, C.-J.; Wilm, C. Bioorg. Med.
Chem. Lett. 1997, 7, 1883–1886. (e) Beier, N.; Labitzke, E.; Mederski, W. W.
K. R.; Radunz, H.-E.; Rauschenbach-Ruess, K.; Schneider, B. Heterocycles
1994, 39, 117–131.
(5) For selected recent examples, see: (a) Goodell, J. R.; Puig-Basagoiti,
F.; Forshey, B. M.; Shi, P.-Y.; Ferguson, D. M. J. Med. Chem. 2006, 49,
2127–2137. (b) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Manna, F.; Pace, P.
Synlett 1998, 446–448. (c) Godard, A.; Fourquez, J. M.; Tamion, R.;
2-Quinolinones are subunits of a range of pharmaceuticals
and natural products with unique biological activities, con-
stituting an important class of heterocycles. In particular,
(1) (a) Kobayashi, Y.; Harayama, T. Org. Lett. 2009, 11, 1603–1606. and
references cited therein.. (b) Kitahara, Y.; Shimizu, M.; Kubo, A. Hetero-
cycles 1990, 31, 2085–2090. and references cited therein..
ꢀ
Marsais, F.; Queguiner, G. Synlett 1994, 235–236. (d) Anzini, M.; Cappelli,
A.; Vomero, S. J. Heterocycl. Chem. 1991, 28, 1809–1812.
(2) (a) Kraus, J. M.; Verlinde, C. L. M. J.; Karimi, M.; Lepesheva, G. I.;
Gelb, M. H.; Buckner, F. S. J. Med. Chem. 2009, 52, 1639–1647. (b) Hong, D.
S.; Sebti, S. M.; Newman, R. A.; Blaskovich, M. A.; Ye, L.; Gagel, R. F.;
Moulder, S.; Wheler, J. J.; Naing, A.; Tannir, N. M.; Ng, C. S.; Sherman,
S. I.; Naggar, A. K. E.; Khan, R.; Trent, J.; Wright, J. J.; Kurzrock, R. Clin.
Cancer Res. 2009, 15, 7061–7068. (c) Capell, B. C.; Olive, M.; Erdos, M. R.;
Cao, K.; Faddah, D. A.; Tavarez, U. L.; Conneely, K. N.; Qu, X.; San, H.;
Ganesh, S. K.; Chen, X.; Avallone, H.; Kolodgie, F. D.; Virmani, R.; Nabel,
E. G.; Collins, F. S. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 15902–15907. (d)
Andresen, B. M.; Couturier, M.; Cronin, B.; D’Occhio, M.; Ewing, M. D.;
Guinn, M.; Hawkins, J. M.; Jasys, V. J.; LaGreca, S. D.; Lyssikatos, J. P.;
Moraski, G.; Ng, K.; Raggon, J. W.; Stewart, A. M.; Tickner, D. L.; Tucker,
J. L.; Urban, F. J.; Vazquez, E.; Wei, L. Org. Process Res. Dev. 2004, 8, 643–
650. (e) Venet, M.; End, D.; Angibaud, P. Curr. Top. Med. Chem. 2003, 3,
1095–1102.
(3) (a) Boy, K. M.; Guernon, J. M.; Sit, S.-Y.; Xie, K.; Hewawasam, P.;
Boissard, C. G.; Dworetzky, S. I.; Natale, J.; Gribkoff, V. K.; Lodge, N.;
Starrett, J. E., Jr. Bioorg. Med. Chem. Lett. 2004, 14, 5089–5093. (b)
Hewawasam, P.; Fan, W.; Cook, D. A.; Newberry, K. S.; Boissard, C. G.;
Gribkoff, V. K.; Starret, J.; Lodge, N. J. Bioorg. Med. Chem. Lett. 2004, 14,
4479–4482. (c) Hewawasam, P.; Fan, W.; Ding, M.; Flint, K.; Cook, D.;
Goggings, G. D.; Myers, R. A.; Gribkoff, V. K.; Boissard, C. G.; Dworetzky,
S. I.; Starret, J. E., Jr.; Lodge, N. J. J. Med. Chem. 2003, 46, 2819–2822. (d)
Hewawasam, P.; Fan, W.; Knipe, J.; Moon, S. J.; Boissard, C. G.; Gribkoff,
V. K.; Starret, J. E., Jr. Bioorg. Med. Chem. Lett. 2002, 12, 1779–1783.
ꢀ ꢀ ꢀ
´
nguez-Fernandez, F; Lopez-Sanz, J.; Perez-Mayoral, E.;
(6) (a) Domı
ꢁ
Bek, D.; Martın-Aranda, R. M.; Lopez-Peinado, A. J.; Cejka, J. Chem.
ꢀ
´
Cat. Chem. 2009, 1, 241–243. and references cited therein.. (b) Marull, M.;
Lefebvre, O.; Schlosser, M. Eur. J. Org. Chem. 2004, 54–63. and references
cited therein..
(7) For selected recent examples, see: (a) Minville, J.; Poulin, J.; Dufresne,
C.; Sturino, C. F. Tetrahedron Lett. 2008, 49, 3677–3681. (b) Ryabukhin, D. S.;
Vasil’ev, A. V. Russ. J.Org.Chem.2008, 44, 1849–1851. (c)Park, K. K.;Lee, J. J.
Tetrahedron 2004, 60, 2993–2999. (d) Wang, J.; Discordia, R. P.; Crispino,
G. A.; Li, J.; Grosso, J. A.; Polniaszek, R.; Truc, V. C. Tetrahedron Lett. 2003,
44, 4271–4273.
(8) (a) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C. Org. Lett.
2009, 11, 583–586. (b) Liu, Z.; Shi, C.; Chen, Y. Synlett 2008, 1734–1736. (c)
Battistuzzi, G.; Bernini, R.; Cacchi, S.; De Salve, I.; Fabrizi, G. Adv. Synth.
Catal. 2007, 349, 297–302. (d) Bernini, R.; Cacchi, S.; Fabrizi, G.; Sferrazza,
A. Heterocycles 2006, 69, 99–105. (e) Kadnikov, D. V.; Larock, R. C. J. Org.
Chem. 2004, 69, 6772–6780.
(9) (a) Mori, M.; Chiba, K.; Ohta, N.; Ban, Y. Heterocycles 1979, 13, 329–
332. (b) Cortese, N. A.; Ziegler, C. B., Jr.; Hrnjez, B. J.; Heck, R. F. J. Org.
Chem. 1978, 43, 2952–2958.
(10) Pd-catalyzed functionalizations of 2-quinolinones were also re-
ported; see, for example: (a) Wang, A.; Wang, B.; Wu, J. J. Comb. Chem.
2007, 9, 811–817. (b) Glasnov, T. N.; Stadlbauer, W.; Kappe, C. O. J. Org.
Chem. 2005, 70, 3864–3870.
3900 J. Org. Chem. 2010, 75, 3900–3903
Published on Web 05/06/2010
DOI: 10.1021/jo100557s
r
2010 American Chemical Society