Journal of the American Chemical Society
COMMUNICATION
can be employed in the asymmetric transformation, while exhi-
biting broad functional group tolerance. Furthermore, the
reaction displays a remarkable tolerance to water and oxygen,
and reactions are typically performed under an atmosphere of
air in screw-top vials and without the need for purification or
distillation of any commercially obtained materials. Finally, the
optimal chiral ligand, (S)-t-BuPyOX (4), is expediently pre-
pared, rendering this process an experimentally simple, prac-
tical method for enantioselective construction of all-carbon
quaternary stereocenters. Continuing investigations of this
method and application of this chemistry in the context of
natural product synthesis are currently underway and will be
reported in due course.
2008, 47, 8211. (h) Ladjel, C.; Fuchs, N.; Zhao, J.; Bernardinelli, G.; Alexakis,
A. Eur. J. Org. Chem. 2009, 4949. (i) Palais, L.; Alexakis, A. Chem.—Eur. J.
2009, 15, 10473. (j) M€uller, D.; Hawner, C.; Tissot, M.; Palais, L.; Alexakis, A.
Synlett 2010, 1694. (k) Hawner, C.; M€uller, D.; Gremaud, L.; Felouat, A.;
Woodward, S.; Alexakis, A. Angew. Chem., Int. Ed. 2010, 49, 7769.
(5) (a) Martin, D.; Kehrli, S.; d’Augustin, M.; Clavier, H.; Mauduit,
M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416. (b) Kehrli, S.; Martin,
D.; Rix, D.; Mauduit, M.; Alexakis, A. Chem.—Eur. J. 2010, 16, 9890. (c)
Hꢀenon, H.; Mauduit, M.; Alexakis, A. Angew. Chem., Int. Ed. 2008,
47, 9122. (d) Matsumoto, Y.; Yamada, K.-I.; Tomioka, K. J. Org. Chem.
2008, 73, 4578.
(6) Recently, an asymmetric conjugate addition of cyanide in the
presence of a catalyst derived from Sr(Oi-Pr)3 has been reported; see:
Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 8862.
(7) (a) For the seminal report in this area, see: Takaya, Y.;
Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc.
1998, 120, 5579. (b) For an excellent review, see: Hayashi, T.; Yamasaki,
K. Chem. Rev. 2003, 103, 2829.
(8) For selected recent examples, see: (a) Hayashi, T.; Ueyama, K.;
Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508. (b)
Fischer, C.; Defieber, C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc.
2004, 126, 1628. (c) Shintani, R.; Ueyama, K.; Yamada, I.; Hayashi, T.
Org. Lett. 2004, 6, 3425. (d) Otomaru, Y.; Okamoto, K.; Shintani, R.;
Hayashi, T. J. Org. Chem. 2005, 70, 2503. (e) Paquin, J.-F.; Defieber, C.;
Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 10850.
(9) (a) Mauleoꢀn, P.; Carretero, J. C. Chem. Commun. 2005, 4961.
(b) Shintani, R.; Duan, W.-L.; Hayashi, T. J. Am. Chem. Soc. 2006,
128, 5628.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details. This ma-
b
org.
’ AUTHOR INFORMATION
Corresponding Author
(10) (a) Shintani, R.; Tsutsumi, Y.; Nagaosa, M.; Nishimura, T.;
Hayashi, T. J. Am. Chem. Soc. 2009, 131, 13588. (b) Shintani, R.; Takeda,
M.; Nishimura, T.; Hayashi, T. Angew. Chem., Int. Ed. 2010, 49, 3969.
(11) The same group also reported additions to β,β-disubstituted
R,β-unsaturated esters; see: Shintani, R.; Hayashi, T. Org. Lett. 2011, 13,
350.
(12) A recent paper describing the use of a Rh•OlefOX (olefin-
oxazoline) complex provided a single example of a phenylboronic acid
addition to 3-methylcyclohexen-2-one (i.e., 1 þ 2 f 3). Unfortunately,
ketone 3 was isolated in only 36% yield and 85% ee; see: Hahn, B. T.;
Tewes, F.; Fr€ohlich, R.; Glorius, F. Angew Chem., Int. Ed. 2010, 49, 1143.
(13) For excellent review articles, see: (a) Gutnov, A. Eur. J. Org.
Chem. 2008, 4547. (b) Christoffers, J.; Koripelly, G.; Rosiak, A.; R€ossle,
M. Synthesis 2007, 1279. (c) For a recent example, see: Xu, Q.; Zhang,
R.; Zhang, T.; Shi, M. J. Org. Chem. 2010, 75, 3935.
’ ACKNOWLEDGMENT
This publication is based on work supported by Award No.
KUS-11-006-02, made by KingAbdullah University of Scienceand
Technology (KAUST). The authors wish to thank NIH-NIGMS
(R01GM080269-01), Amgen, Abbott, Boehringer Ingelheim, and
Caltech for financial support. K.K. acknowledges the Japan Society
for the Promotion of Science for a postdoctoral fellowship. M.G. is
grateful to the Swiss National Science Foundation for financial
support through a postdoctoral fellowship.
’ REFERENCES
(1) For reviews on the synthesis of quaternary stereocenters, see: (a)
Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. (b) Douglas,
C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363. (c)
Christoffers, J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473. (d) Trost,
B. M.; Jiang, C. Synthesis 2006, 369. (e) Mohr, J. T.; Stoltz, B. M. Chem.
—Asian J. 2007, 2, 1476. (f) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N.
Eur. J. Org. Chem. 2007, 36, 5969.
(14) Lin, S.; Lu, X. Org. Lett. 2010, 12, 2536.
(15) Brunner, H.; Obermann, U. Chem. Ber 1989, 122, 499.
(16) Our preliminary ligand search was conducted under a range of
conditions that varied solvent, temperature, additives, and palladium
source. Ligand frameworks tested included a variety of chiral bis-
(oxazolines) (BOX), pyridino(bis)oxazolines (PyBOX), phosphinoox-
azolines (PHOX), and quinolinooxazolines (QuinOX).
(2) For an excellent comprehensive review, see: Hawner, C.; Alex-
akis, A. Chem. Commun. 2010, 46, 7295.
(17) The absolute stereochemistry for all products shown was assigned
by analogy to the product from Table 2, entry 2 as described in ref 3c.
(18) See Supporting Information.
(3) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (b) Wu, J.;
Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 4584.
(c) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988. (d)
Wilsily, A.; Fillion, E. J. Am. Chem. Soc. 2006, 128, 2774. (e) Lee, K.-S.;
Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006,
128, 7182. (f) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2007, 46, 1097. (g) Wilsily, A.; Fillion, E. Org. Lett.
2008, 10, 2801. (h) Wilsily, A.; Fillion, E. J. Org. Chem. 2009, 74, 8583.
(i) Dumas, A. M.; Fillion, E. Acc. Chem. Res. 2010, 43, 440.
(19) Other solvents proved to be inferior to dichloroethane.18
(20) Under the optimized conditions it was found that other PyOX
ligands were inferior with respect to enantiocontrol. For instance, use of
(S)-Ph-PyOX and (S)-i-Pr-PyOX as a ligand under the reaction condi-
tions outlined in Table 1, entry 6 provided 3 in 99% yield in each case,
but 52% and 40% ee, respectively.
(21) It should be noted that (R)-t-Bu-PyOX can be prepared from
(R)-t-leucine, a relatively expensive commercial compound that is now
readily available by the Strecker method of Jacobsen; see: Zuend, S. J.;
Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature 2009, 461,
968–970.
(22) Substituents at the 2-position of the arylboronic acid were
detrimental to the yields and stereoselectivity of the reaction with enone
1, although 2-fluorophenylboronic acid underwent the desired reaction
to provide a product in 32% yield and 77% ee.18
(4) (a) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376. (b) Fuchs, N.; d’Augustin, M.; Humam, M.; Alexakis, A.; Taras, R.;
Gladiali, S. Tetrahedron: Asymm. 2005, 16, 3143. (c) Vuagnoux-d’Augustin,
M.; Alexakis, A. Chem.—Eur. J. 2007, 13, 9647. (d) Vuagnoux-d’Augustin,
M.; Kehrli, S.; Alexakis, A. Synlett 2007, 2057. (e) Palais, L.; Mikhel, I. S.;
Bournaud, C.; Micouin, L.; Falciola, C. A.; Vuagnoux-d’Augustin, M.; Rosset,
S.; Bernardinelli, G.; Alexakis, A. Angew. Chem., Int. Ed. 2007, 46, 7462. (f)
May, T. L.; Brown, M. K.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2008,
47, 7358. (g) Hawner, C.; Li, K.; Cirriez, V.; Alexakis, A. Angew. Chem., Int. Ed.
6904
dx.doi.org/10.1021/ja200664x |J. Am. Chem. Soc. 2011, 133, 6902–6905