A R T I C L E S
Pa¨ch et al.
when monomers bearing functional groups are used and other
than linear homopolymers are to be analyzed. Mostly, therefore,
only apparent molar masses and polydispersities are determined
by size exclusion chromatography using standard polymersssuch
as polystyrene or poly(methylmethacrylate)sfor calibration. In
contrast, the true molar masses and, especially, the degrees of
end group functionality are only assumed to be appropriate on
the basis of indirect observations, due to the lack of convenient
analytical tools.
A priori, end group analysis is a universal method to
determine molar masses of homo- as well as copolymers.
Importantly, end group analysis is also valid in the case of
associating polymers, for which most other methods fail. The
use of this method requires only that the average number of
end groups per macromolecule is known and that the end groups
can be reliably identified and quantified. In practice however,
both conditions are normally difficult to fulfill. The situation is
different for polymers made by living polymerizations or CRP,
as all macromolecules should in very good approximation bear
either exactly one or exactly two defined end groups, when using
a monofunctional initiator. In the case of the thiocarbonyl-based
RAFT process, the situation is particularly advantageous. The
moderating RAFT agent that can be conveniently presented as
R-S-C(dS)-Z, will confer one defined initiating end group
R and one defined terminating end group Z to each polymer if
the polymerization is conducted correctly.17 Experimentally, the
number-average molar mass Mn can then be calculated via end
group analysis as
should preferentially make use of the R rather than of the Z-end
group. Importantly, if both end groups R and Z can be quantified
independently, the degree of the end group functionality can
be deduced from the ratio [Zinc]/[Rinc].24,25
Several methods for end group analysis and molar mass
determination of RAFT-made polymers have been applied, such
as UV absorption,20,21,26-32 SEC with UV detection,19,33 elemental
15,24,25,30,34-45
analysis,24,30 as well as H NMR spectroscopy.
1
1
Among these, UV absorption and H NMR spectroscopy are
preferable, as they ask only for standard equipment, and their
signals provide easily quantitative information. Especially NMR
analysis is attractive due to its easy accessibility and the
relatively short measurement times. Still, sufficiently intense
end group signals that are not obscured by signals from any
other groups are required. Hence, compounds which are effective
CRP agents and, in addition, exhibit intense NMR signals in a
spectral region free of interferences by common solvents and
polymers are desirable. For the sake of best signal-to-noise
ratios, singlet signals are preferred. So far, several examples
1
for end group analysis Via H NMR spectroscopy have been
reported. However, the RAFT agents used typically had only
NMR marker groups, which showed up in the range of 0.8-8
ppm, i.e. in the range where many polymers show signals of
(24) Bivigou-Koumba, A. M.; Kristen, J.; Laschewsky, A.; Mu¨ller-
Buschbaum, P.; Papadakis, C. M. Macromol. Chem. Phys. 2009, 210,
565–578.
(25) Skrabania, K.; Li, W.; Laschewsky, A. Macromol. Chem. Phys. 2008,
209, 1389–1403.
(26) Arotc¸are´na, M.; Heise, B.; Ishaya, S.; Laschewsky, A. J. Am. Chem.
Soc. 2002, 124, 3787–3793.
Menxp ) Mmonomer × [CRU]/[Rinc] + MCTA
(1a)
(27) Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Rizzardo, E.; Thang, S. H.;
Wilson, G. J. Chem. Commun. 2002, 2276–2277.
(28) Donovan, M. S.; Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L.
Macromolecules 2002, 35, 4123–4132.
or
(29) Mertoglu, M.; Garnier, S.; Laschewsky, A.; Skrabania, K.; Storsberg,
J. Polymer 2005, 46, 7726–7740.
Menxp ) Mmonomer × [CRU]/[Zinc] + MCTA
(1b)
(30) Bivigou-Koumba, A. M.; Go¨rnitz, E.; Laschewsky, A.; Mu¨ller-
Buschbaum, P.; Papadakis, C. M. Colloid Polym. Sci. 2010, 288, 499–
517.
with Mmonomer and MCTA being the molar masses of the monomer
and the RAFT chain transfer agent, respectively, and [CRU],
[Rinc], and [Zinc] being the concentrations of the constitutional
repeat units (CRUs), the R-groups, and the Z-groups incorpo-
rated in the polymers, respectively. Equation 1a is based on
the conditions (1) that the amount of initiator-derived polymer
chains is much smaller than the ones initiated by R residues
and (2) that uncontrolled chain transfer to the solvent, the
monomer, and impurities is negligible. Both conditions can be
fulfilled by the appropriate choice of the engaged amounts of
initiator vs RAFT agent,8,17 and of the solvent. In eq 1b, one
must further assume that the extent of all reactions inducing a
loss of thiocarbonyl moieties is negligible, too. This assumption
is less reliable, as several side reactions of thiocarbonates and
trithiocarbonates under RAFT conditions and workup are
known.18-24 Therefore, end group analysis of the molar mass
(31) Skrabania, K.; Berlepsch, H. V.; Bo¨ttcher, C.; Laschewsky, A.
Macromolecules 2010, 43, 271–281.
(32) Chen, M.; Ghiggino, K. P.; Launikonis, A.; Mau, A. W. H.; Rizzardo,
E.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J. J. Mater. Chem.
2003, 13, 2696–2700.
(33) Hahn, T. D.; Thomaides, J. S.; Huey, A.; Morales, J.; Meng, S. PMSE
Prepr. 2006, 95, 490–491.
(34) Albertin, L.; Stenzel, M.; Barner-Kowollik, C.; Foster, L. J. R.; Davis,
T. P. Macromolecules 2004, 37, 7530–7537.
(35) Rizzardo, E.; Chiefari, J.; Chong, B. Y. K.; Ercole, F.; Krstina, J.;
Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Mejis, G. F.; Moad,
C. L.; Moad, G.; Thang, S. H. Macromol. Symp. 1999, 143, 291–
307.
(36) Lebreton, P.; Ameduri, B.; Boutevin, B.; Corpart, J.-M. Macromol.
Chem. Phys. 2002, 203, 522–537.
(37) Roth, P. J.; Kessler, D.; Zentel, R.; Theato, P. Macromolecules 2008,
41, 8316–8319.
(38) Tang, C.; Kowalewski, T.; Matyjaszewski, K. Macromolecules 2003,
36, 8587–8589.
(39) Ray, B.; Isobe, Y.; Matsumoto, K.; Habaue, S.; Okamoto, Y.;
Kamigaito, M.; Sawamoto, M. Macromolecules 2004, 37, 1702–1710.
(40) Wan, X.; Zhu, X.; Zhu, J.; Zhang, Z.; Cheng, Z. J. Polym. Sci., Part
A: Polym. Chem. 2007, 45, 2886–2896.
(17) Favier, A.; Pichot, C.; Charreyre, M.-T. Macromol. Rapid Commun.
2006, 27, 653–692.
(18) Favier, A.; Charreyre, M.-T.; Chaumont, P.; Pichot, C. Macromolecules
2002, 35, 8271–8280.
(41) Goldmann, A. S.; Que´mener, D.; Millard, P.-E.; Davis, T. P.; Stenzel,
M. H.; Barner-Kowollik, C.; Mu¨ller, A. H. E. Polymer 2008, 49, 2274–
2281.
(19) Thomas, D. B.; Convertine, A. J.; Hester, R. D.; Lowe, A. B.;
McCormick, C. L. Macromolecules 2004, 37, 1735–1741.
(20) Baussard, J.-F.; Habib-Jiwan, J.-L.; Laschewsky, A.; Mertoglu, M.;
Storsberg, J. Polymer 2004, 45, 3615–3626.
(42) Troll, K.; Kulkarni, A.; Wang, W.; Darko, C.; Bivigou-Koumba, A. M.;
Laschewsky, A.; Mu¨ller-Buschbaum, P.; Papadakis, C. M. Colloid
Polym. Sci. 2008, 286, 1079–1092.
(21) Mertoglu, M.; Laschewsky, A.; Skrabania, K.; Wieland, C. Macro-
molecules 2005, 38, 3601–3614.
(43) Gibson, M. I.; Fro¨hlich, E.; Klok, H.-A. J. Polym. Sci., Part A: Polym.
Chem. 2009, 47, 4332–4345.
(22) Albertin, L.; Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P. Polymer
2006, 47, 1011–1019.
(44) Li, H.; Yu, B.; Matsushima, H.; Hoyle, C. E.; Lowe, A. B.
Macromolecules 2009, 42, 6537–6542.
(23) Gruendling, T.; Pickford, R.; Guilhaus, M.; Barner-Kowollik, C. J.
Polym. Sci., Part A: Polym. Chem. 2008, 46, 7447–7461.
(45) Zhou, N.; Zhang, Z.; Zhu, J.; Cheng, Z.; Zhu, X. Macromolecules
2009, 42, 3898–3905.
9
8758 J. AM. CHEM. SOC. VOL. 132, NO. 25, 2010