Lee and Galoppini
JOCArticle
porphyrins 2 and 3,15 designed to bind planar to the surface
of the semiconductor and having the top plane of the ring
protected by a single tether (strap) or a double tether (cap),
respectively, Figure 2. The main goal is to use such model
compounds to study charge-transfer kinetics on TiO2 or
ZnO, as 2 and 3 may provide better control over the binding
geometry, and, ultimately, to a better understanding of
injection and recombination dynamics. The strap was added
to limit or prevent porphyrin-porphyrin stacking and con-
tacts with the semiconductor while providing a constraint on
the conformation of the meso-phenyl rings.
One attractive aspect of this design is that the phenyl ring
in the strap (or cap) could eventually be replaced by a photo-
or redox-active unit (i.e., an electron donor, for instance). We
have followed Lindsey’s classification16 and named 2 as
“strapped” and 3 as “capped” porphyrins. We recently
reported the synthesis of milligram amounts of metal-free
3.15 Typically, however, the syntheses of capped porphyrins
similar to 3 require long and low-yielding pathways.17
FIGURE 1. Tetrachelate porphyrins 1a-c bind planar to the semi-
conductor surface. The calculated height increases from 3.6 A (1a)
˚
13b
˚
to 7.1 A (1b) to 9.1 A (1c).
˚
Recent charge-transfer and computational studies14 of the
tetrachelated ZnTPP compounds, however, suggest that it is
necessary to design an improved generation of models to (a)
inhibit porphyrin stacking, (b) limit the conformational
mobility of the phenyl rings carrying the anchor group,
and (c) decrease the possibility of direct contacts with the
semiconductor in mesoporous films (i.e., head-down bind-
ing or “shorting” contacts10 with adjacent nanoparticles).
To improve the design, we have now synthesized ZnTPP
(9) (a) Schmidt-Mende, L.; Campbell, W. M.; Wang, Q.; Jolley, K. W.;
€
Officer, D. L.; Nazeeruddin, Md. K.; Gratzel, M. ChemPhysChem 2005, 6,
1253–1258. (b) Chou, J.-H., Nalwa, H. S.; Kosal, M. E.; Rakow, N. A.; Suslick, K.
S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: New York, 2000; Vol. 6, pp 43-131. (c) Balanay, M. P.;
Dipaling, C. V. P.; Lee, S. H.; Kim, D. H.; Lee, K. H. Sol. Energy Mater. Sol.
Cells 2007, 91, 1775–1781. (d) Montanari, I.; Nelson, J.; Durrant, J. R. J. Phys.
Chem. B 2002, 106, 12203–12210.
(1) (a) Kamat, P. V. J. Phys. Chem. C. 2007, 111, 2834–2860. (b) Campbell,
W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev.
2004, 248, 1363–1379. (c) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem.
Res. 2001, 34, 40–48. (d) Tachibana, Y.; Haque, S. A.; Mercer, I. P.; Durrant,
J. R.; Klug, D. R. J. Phys. Chem. B. 2000, 104, 1198–1205. (e) Campbell,
W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K. C.;
(10) (a) Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E.
W.-G. J. Phys. Chem. C 2009, 113, 755–764. (b) Chang, C.-W.; Luo, L.;
Chou, C.-K.; Lo, C.-F.; Lin, C.-Y.; Hung, C.-S.; Lee, Y.-P.; Diau, E. W.-G.
J. Phys. Chem. C. 2009, 113, 11524–11531. (c) Lo, C.-F.; Luo, L.; Diau, E.
W.-G.; Chang, I.-J.; Lin, C.-Y. Chem. Commun. 2006, 13, 1430–1432.
(11) (a) Loewe, R. S.; Ambroise, A.; Muthukumaran, K.; Padmaja, K.;
Lysenko, A. B.; Mathur, G.; Li, Q.; Bocian, D. F.; Misra, V.; Lindsey, J. S. J.
Org. Chem. 2004, 69, 1453.
€
Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Gratzel, M.; Officer,
D. L. J. Phys. Chem. C. 2007, 111, 11760–11762. (f) Cherian, S.; Wamser,
ꢀ
C. C. J. Phys. Chem. B. 2000, 104, 3624–3629. (g) Odobel, F.; Blart, E.; Lagree,
(12) (a) Rochford, J.; Galoppini, E. Langmuir 2008, 24, 5366–5374. (b)
Rangan, S.; Katalinic, S.; Thorpe, R.; Bartynski, R. A.; Rochford, J.;
Galoppini, E. J. Phys. Chem. C 2010, 114, 1139–1147.
M.; Villieras, M.; Boujtita, H.; El Murr, N.; Caramori, S.; Bignozzi, C. A.
J. Mater. Chem. 2003, 13, 502–510. (h) Hasobe, T.; Fukuzumi, S.; Kamat,
P. V. J. Phys. Chem. B 2006, 110, 25477–25484. (i) Nazeeruddin, Md.
K.; Humphry-Baker, R.; Officer, D. L.; Campbell, W. M.; Burrell, A. K.;
(13) (a) de Tacconi, N. R.; Chanmanee, W.; Rajeshwar, K.; Rochford, J.;
Galoppini, E. J. Phys. Chem. C 2009, 113, 2996–3006. (b) Rochford, J.; Chu,
D.; Hagfeldt, A.; Galoppini, E. J. Am. Chem. Soc. 2007, 129, 4655–4665. (c)
Galoppini, E.; Rochford, J.; Chen, H.; Saraf, G.; Lu, Y.; Hagfeldt, A.;
Boschloo, G. J. Phys. Chem. B 2006, 110, 16159–16161.
€
Gratzel, M. Langmuir 2004, 20, 6514–6517. (j) Clifford, J. N.; Palomares, E.;
Nazeeruddin, Md. K.; Gratzel, M.; Nelson, J.; Li, X.; Long, N. J.; Durrant,
€
J. R. J. Am. Chem. Soc. 2004, 126, 5225. (k) Durrant, J. R.; Haque, S. A.;
Palomares, E. Coord. Chem. Rev. 2004, 248, 1247. (l) Hasobe, T.; Hattori, S.;
Kamat, P. V.; Urano, Y; Umezawa, N.; Nagano, T.; Fukuzumi, S. Chem.
Phys. 2005, 319, 243. (m) Hasobe, T.; Hattori, S.; Kamat, P. V.; Fukuzumi,
S. Tetrahedron 2006, 62, 1937. (n) Eu, S.; Hayashi, S.; Umeyama, T.; Oguro,
A.; Kawasaki, M.; Kadota, N.; Matano, Y.; Imahori, H. J. Phys. Chem. C
2007, 111, 3528. (o) Kira, A.; Tanaka, M.; Umeyama, T.; Matano, Y.;
Yoshimoto, N.; Zhang, Y.; Ye, S.; Lehtivuori, H.; Tkachenko, N. V.;
Lemmetyinen, H.; Imahori, H. J. Phys. Chem. C 2007, 111, 13618. (p) Tanaka,
M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H. Chem.
Commun. 2007, 2069.
€
(14) Sundstrom, V.; Persson, P. Unpublished results. Some of the results
were presented at the 2009 International Symposium on Dye-Sensitized
Solar Cells , 22-23 Oct 2009, Jhongli City, Taoyuan, Taiwan.
(15) A viable approach to porphyrin 2, designed to have all anchoring
groups toward the same direction, is in progress, although we have synthe-
sized a few milligrams of the metal-free homologue of 2. Lee, C.-H.; Chitre,
K.; Galoppini, E. Submitted for publication.
(16) Wagner, R. W.; Johnson, T. E.; Lindsey, J. S. Tetrahedron 1997, 53,
6755–6790.
(17) (a) Johnson, M. R.; Seok, W. K.; Ibers, J. A. J. Am. Chem. Soc. 1991,
113, 3998–4000. (b) Slebodnick, C.; Duval, M. L.; Ibers, J. A. Inorg. Chem.
1996, 35, 3607–3613. (c) Maruyama, K.; Kobayashi, F.; Osuka, A. Bull.
Chem. Soc. Jpn. 1990, 63, 2672–2681. (d) Battersby, A. R.; Howson, W.;
Hamilton, A. D. Chem. Commun. 1982, 21, 1266–1268. (e) Zaitseva, S. V.;
Zdanovich, S. A.; Semeikin, A. S.; Golubchikov, O. A. Russ. J. Gen. Chem.
2003, 73, 467–472. (f) Baldwin, J. E.; Cameron, J. H.; Crossley, M. J.; Dagley,
I. J.; Hall, S. R.; Klose, T. Dalton Trans. 1984, 8, 1739–1746. (g) Crossley, M.
J.; Thordarson, P. Angew. Chem., Int. Ed. 2002, 41, 1709–1712. (h) Shimizu,
M.; Basolo, F. Inorg. Chim. Acta 1984, 91, 247–250. (i) Almog, J.; Baldwin, J.
E.; Dyer, R. L.; Peters, M. J. Am. Chem. Soc. 1975, 97, 226–227. (j) Nagasaki,
T.; Fujishima, H.; Shinkai, S. Chem. Lett. 1994, 23, 989–992. (k) Panda, P.
K.; Lee, C.-H. Org. Lett. 2004, 6, 671–674. (l) Leighton, P.; Sanders, J. K. M.
Chem. Commun. 1984, 13, 854–856. (m) Collman, J. P.; Zhang, X.; Lee, V. J.;
Brauman, J. I. Chem. Commun. 1992, 13, 1647–1649. (n) Lee, C. H.; Garcia,
B.; Bruice, T. C. J. Am. Chem. Soc. 1990, 112, 6434–6435. (o) Blasko, A.;
Garcia, B.; Bruice, T. C. J. Org. Chem. 1993, 58, 5738–5747. (p) Garcia, B.;
Lee, C. H.; Blasko, A.; Bruice, T. C. J. Am. Chem. Soc. 1991, 113, 8118–8126.
(q) Wytko, J. A.; Graf, E.; Weiss, J. J. Org. Chem. 1992, 57, 1015–1018. (r)
Giraudeau, A.; Gisselbrecht, J. P.; Gross, M.; Weiss, J. Chem. Commun.
1993, 13, 1103–1105. (s) Zhang, H.-Y.; Blasko, A.; Yu, J.-Q.; Bruice, T. C. J.
Am. Chem. Soc. 1992, 114, 6621–6630. (t) Zhang, H.-Y.; Bruice, T. C. Inorg.
Chim. Acta 1996, 247, 195–202.
(2) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R.,
Ed.; Academic Press: New York, 2000; Vols. 8 and 9.
€
(3) (a) Dean, M. L.; Schmink, J. R.; Leadbeater, N. E.; Bruckner, C.
Dalton Trans. 2008, 1341–1345. (b) McCarthy, J. R.; Melfi, P. J.; Capetta, S.
€
H.; Bruckner, C. Tetrahedron 2003, 59, 9137–9146.
(4) Mozer, A. J.; Griffith, M. J.; Tsekouras, G.; Wagner, P.; Wallace, G.
G.; Mori, S.; Sunahara, K.; Miyashita, M.; Earles, J. C.; Gordon, K. C.; Du,
L.; Katoh, R.; Furube, A.; Officer, D. L. J. Am. Chem. Soc. 2009, 131, 15621–
15623.
(5) (a) Stromberg, J. R.; Marton, A.; Kee, H. L.; Kirmaier, C.; Diers, J.
R.; Muthiah, C.; Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Meyer, G. J.;
Holten, D. J. Phys. Chem. C. 2007, 111, 15464–15478. (b) Muthiah, C.;
Taniguchi, M.; Kim, H.-J.; Schmidt, I.; Kee, H. L.; Holten, D.; Bocian, D. F.;
Lindsey, J. S. Photochem. Photobiol. 2007, 83, 1513.
(6) Drain, C. M.; Varotto, A.; Radivojevic, I. Chem. Rev. 2009, 109, 1630–
1658.
(7) Brune, A.; Jeong, G.; Liddell, P. A.; Sotomura, T.; Moore, T. A.;
Moore, A. L.; Gust, D. Langmuir 2004, 20, 8366.
(8) (a) Koehorst, R. B. M.; Boschloo, G. K.; Savenije, T. J.; Goossens, A.;
Schaafsma, T. J. J. Phys. Chem. B 2000, 104, 2371–2377. (b) Hasselman, G.
M.; Watson, D. F.; Stromberg, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J.
S.; Meyer, G. J. J. Phys. Chem. B 2006, 110, 25430–25440.
J. Org. Chem. Vol. 75, No. 11, 2010 3693