Y. Hamada, N. Atsumi and F. Tabuchi, Synlett, 2003, 2139–2142;
(c) W. Cui and N. Loeppky, Tetrahedron, 2001, 57, 2953–2956.
3 (a) P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams,
M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett.,
1998, 39, 2941–2944; (b) D. M. T. Chan, K. L. Monaco,
R.-P. Wang and M. P. Winters, Tetrahedron Lett., 1998, 39,
2933–2936.
4 (a) D. M. T. Chan and P. Y. S. Lam, Recent Advances in Copper-
promoted C–Heteroatom Bond Cross-coupling Reaction with
Boronic Acids and derivatives, in Boronic acids: Preparation and
Application in Organic Synthesis and Medicine, ed. D. G. Hall,
Wiley-VCH, Weinheim, 2005, pp. 205–240; (b) S. V. Ley and
A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400–5449;
(c) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev.,
2004, 248, 2337–2364; (d) M. Kienle, S. R. Dubbaka, K. Brade and
P. Knochel, Eur. J. Org. Chem., 2007, 4166–4176.
5 T. Tsuritani, N. A. Strotman, Y. Yamamoto, M. Kawasaki,
N. Yasuda and T. Mase, Org. Lett., 2008, 10, 1653–1655.
Scheme 2 Chemoselective N-cyclopropylation of aliphatic amines vs.
secondary amides.
6 For
A. Gagnon, M. St-Onge, K. Little, M. Duplessis and F. Barabe
J. Am. Chem. Soc., 2007, 129, 44–45.
7 S. Benard, L. Neuville and J. Zhu, J. Org. Chem., 2008, 73,
a related coupling involving tricyclopropylbismuth, see:
´
,
chelating ability of a-aminoester could hamper the second
N-cyclopropylation. Using Na2CO3 as base caused a significant
degree of racemization (ee 65%). However, racemization was
minimized using NaHCO3 as a base, leading to 3o with an ee
of 85%.
´
6441–6444.
8 R. P. Hanzilk, V. Kishore and R. Tullman, J. Med. Chem., 1979,
22, 760–761.
9 R. B. Silverman and S. J. Hoffman, J. Am. Chem. Soc., 1980, 102,
884–886.
Finally, it was possible to chemoselectively N-cyclopropylate
the aliphatic amines in the presence of amides (Scheme 2).
Thus reaction of N-isobutylpiperidine-3-carboxamide (2p)
with 2 equivalents of 1 under standard conditions afforded
the 1-cyclopropyl-N-isobutylpiperidine-3-carboxamide (3p) in
95% yield. Similarly, N-(4-aminobutyl)acetamide (2q) was
converted to N-[4-(dicyclopropylamino)butyl]acetamide (3q)
in 62% yield.
10 M. A. Cerny and M. R. P. Hanzlik, J. Am. Chem. Soc., 2006, 128,
3346–3354, and references therein.
11 D. J. Wallace and C. Y. Chen, Tetrahedron Lett., 2002, 43,
6987–6990.
12 (a) K. Kinoshita, Bull. Chem. Soc. Jpn., 1959, 32, 777–780;
(b) K. Kinoshita, Bull. Chem. Soc. Jpn., 1959, 32, 780–783;
(c) K. Kinoshita, Bull. Chem. Soc. Jpn., 1959, 32, 783–787;
(d) for a recent review, see: F. Hamon, F. Djedaini-Pilard,
F. Barbot and C. Len, Tetrahedron, 2009, 65, 10105–10123.
13 Catalytic Chan–Lam reaction, see: (a) J. P. Collman and
M. Zhong, Org. Lett., 2000, 2, 1233–1236; (b) P. Y. S. Lam,
G. Vincent, C. G. Clark, S. Deudon and P. K. Jadhav, Tetrahedron
Lett., 2001, 42, 3415–3418; (c) J. P. Collman, M. Zhong, L. Zeng
and S. Costanzo, J. Org. Chem., 2001, 66, 1528–1531;
(d) J. C. Antilla and S. L. Buchwald, Org. Lett., 2001, 3,
2077–2079; (e) T. D. Quach and R. A. Batey, Org. Lett., 2003, 5,
4397–4400; (f) S. S. van Berkel, A. Van den Hoogenband,
J. W. Terpstra, M. Tromp, P. W. N. M. Van Leeuwen and G. P.
F. Van Strijdonck, Tetrahedron Lett., 2004, 45, 7659–7662;
(g) J.-B. Lan, L. Chen, X.-Q. Yu, J.-S. You and R.-G. Xie, Chem.
Commun., 2004, 188–189.
We also synthesized compound 3c by other literature
procedures (see ESIw) that indicated clearly the effectiveness
of the present methodology.18
In conclusion, we have developed a copper-promoted
coupling of anilines, secondary and primary amines with
cylcopropylboronic acid (1) to afford the corresponding
N-cyclopropylated derivatives in good to excellent yields.
Amide, ester, ketone, carbamate (N-Boc), and double bond
were tolerated under these reaction conditions. We believe that
such a protocol could find application in medicinal chemistry
for fine-tuning the bioactivities of in-house compound
collections.
14 A selective copper promoted monomethylation of anilines with
MeB(OH)2 has appeared recently: I. Gonza
C. Guerrero, R. Rodrıguez and J. Cruces, Org. Lett., 2009, 11,
1677–1680.
´
lez, J. Mosquera,
´
15 Catalytic conditions that are particularly suitable to aliphatic
amines have been developed, see ref. 13e.
Notes and references
16 (a) S. Mahapatra, J. A. Halfen, E. C. Wilkinson, G. Pan, X. Wang,
V. G. Young, C. J. Cramer, L. Que and W. B. Tolman, J. Am.
Chem. Soc., 1996, 118, 11555–11574; (b) S. Mahapatra,
J. A. Halfen and W. B. Tolman, J. Am. Chem. Soc., 1996, 118,
11575–11586.
17 No cyclopropylated compound was isolated when the reaction was
performed under Tsuritani’s condition (KHMDS), see ref. 5. Such
conditions also failed to provide cyclopropylated aniline 3d.
18 We thank one of the reviewers for suggesting these experiments.
1 (a) S. Patai, The Chemistry of the Cyclopropyl Group, John Wiley &
Sons, New York, 1987, vol. 1; (b) J. Salaun, Cyclopropane
Derivatives and their Diverse Biological Activities, Top. Curr.
Chem., 2000, 207, 1–67; (c) L. A. Wessjohann, W. Brandt and
T. Thiemann, Chem. Rev., 2003, 103, 1625–1647; (d) A. Reichelt
and S. F. Martin, Acc. Chem. Res., 2006, 39, 433–442.
¨
2 (a) M. L. Gillaspy, B. A. Lefker, W. A. Hada and D. J. Hoover,
Tetrahedron Lett., 1995, 36, 7399–7402; (b) Y. Yoshida, K. Umeza,
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3393–3395 | 3395