C O M M U N I C A T I O N S
Table 2. CuH-Catalyzed Asymmetric 1,2-Reductions of
R-Substituted Enonesa
Scheme 3. One Reagent, Two Reactions: One-Pot Asymmetric
1,2-Reduction of an Enone and 1,4-Reduction of an Enoate
(1:1 ratio) to conditions first favoring enone 1,2-reduction gave 2,
with <5% conjugate reduction of 1 being observed. Without
isolation, addition of t-BuOH (1.1 equiv), as originally reported
by Stryker,6,15 was used to enhance the rate of catalyst regeneration.
The presence of this additive along with added silane (1.1 equiv)
led to the asymmetric 1,4-reduction of 21 to ester 22. Both processes
gave high isolated yields and excellent ee’s.
In summary, regioselectivity in reactions of nonracemicaly
ligated, in situ-generated CuH can be dramatically shifted to favor
asymmetric 1,2-reductions over the normally observed 1,4-reduc-
tions of R,ꢀ-unsaturated ketones. This powerful methodology
affords high yields and ee’s of the resulting allylic alcohols having
defined olefin geometries and central chirality.
Acknowledgment. Support of this work by the NIH is gratefully
acknowledged. We are indebted to Takasago and Roche for
supplying the SEGPHOS and BIPHEP ligands, respectively.
Supporting Information Available: Experimental details and
characterization data for new compounds. This material is available
References
a Reactions were carried out on a 0.25 mmol scale in 0.5 mL of
Et2O. Isolated yields after column chromatography are given in
parentheses. The reported ee’s were determined by chiral HPLC or GC
analyses. The stereochemistry shown was determined by analogy to 2
(see Table 1). b Absolute stereochemistry determined by comparing the
optical rotation with that of the known compound. c See text. d See the
Supporting Information.
(1) (a) Review: Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. ReV. 2008,
108, 2916. (b) Yun, J.; Kim, D.; Lee, D. Angew. Chem., Int. Ed. 2006, 45,
2785. (c) Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc.
2004, 126, 8352. (d) Buchwald, S. L.; Aye, Y.; Rainka, M. P. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5821. (e) Czekelius, C.; Carreira, E. M. Angew.
Chem., Int. Ed. 2003, 42, 4793.
(2) Lipshutz, B. H.; Noson, K.; Chrisman, W. J. Am. Chem. Soc. 2001, 123,
12917.
(3) Lee, C.-T.; Lipshutz, B. H. Org. Lett. 2008, 10, 4187.
conditions involved allowed for isolation of a nonracemic cyclo-
hexenol 17 bearing a cross-coupling partner, vinyl triflate, without
losses due to ring fragmentation observed with harsher reducing
agents.13 While treatment of (R)-pulegone with catalytic [(R)-
L2]CuH gave the highly favored anticipated cis product (93%; 99:1
dr), CuH complexed by ent-L2 led predominantly to the less
common trans isomer 18 (88%; 4:1 dr).14
The influence exerted by an R-substituent is further highlighted by
the case of exocyclic olefin-containing enone 19. Notwithstanding full
accessibility of CuH to the ꢀ-site, delivery of hydride took place in a
1,2-fashion, giving allylic alcohol 20 in 78% ee (Scheme 2).
(4) Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045.
(5) Lipshutz, B. H.; Shimizu, H. Angew. Chem., Int. Ed. 2004, 43, 2228.
(6) Chen, J.-X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M. Tetrahedron
2000, 56, 2153.
(7) Chemoselective Cu-catalyzed hydrogenation of enals: (a) Shimizu, H.; Sayo,
N.; Saito, T. Synlett 2009, 1295. Chemoselective Cu-catalyzed asymmetric
hydrogenation of cyclic and acyclic enones: (b) Shimizu, H.; Nagano, T.;
Sayo, N.; Saito, T.; Ohshima, T.; Mashima, K. Synlett 2009, 3143.
Chemoselective Cu-catalyzed reduction of R,ꢀ-unsaturated amino ketones: (c)
Pelss, A.; Kumpulainen, E. T. T.; Koskinen, A. M. P. J. Org. Chem. 2009,
74, 7598. Chemo- and enantioselective hydrosilylation of enones using
monodentate binaphthophosphepine ligands: (d) Junge, K.; Wendt, B.;
Addis, D.; Zhou, S.; Das, S.; Beller, M. Chem. Eur. J. 2010, 16, 68.
(8) Saito, T.; Yokozawa, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi,
H. AdV. Synth. Catal. 2001, 343, 264.
(9) (a) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.;
Lalonde, M.; Mueller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure
Appl. Chem. 1996, 68, 131. (b) Schmid, R.; Foricher, J.; Cereghetti, M.;
Schonholzer, P. HelV. Chim. Acta 1991, 74, 370.
Scheme 2. (L3b)CuH-Catalyzed 1,2-Addition to a
ꢀ,ꢀ-Unsubstituted Enone
(10) Nishiyama, H.; Shiomi, T.; Tsuchiya, Y.; Matsuda, I. J. Am. Chem. Soc.
2005, 127, 6972.
(11) Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405.
(12) For results obtained using ligands other than the ones shown in Table 2,
see the Supporting Information.
(13) (a) Stork, G.; Danheiser, R. L. J. Org. Chem. 1973, 38, 1775. (b) Kamijo,
S.; Dudley, G. B. J. Am. Chem. Soc. 2006, 128, 6499.
(14) Ohkuma, T.; Ikehira, H.; Ikariya, T.; Noyori, R. Synlett 1997, 467.
(15) (a) Stryker, J. M.; Mahoney, W. S.; Daeuble, J. F.; Brestensky, D. M. In
Catalysis of Organic Reactions; Pascoe, W. E., Ed.; Chemical Industries
47; Marcel Dekker: New York, 1992; pp 29-44. (b) Hughes, G.; Kimura,
M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253.
The potential for a ligated CuH complex to induce asymmetry
in two distinct functional groups within the same pot is illustrated
in Scheme 3. Simultaneous exposure of enone 1 and enoate 21
JA102689E
9
J. AM. CHEM. SOC. VOL. 132, NO. 23, 2010 7853