Total Synthesis of Enigmazole A
A R T I C L E S
Scheme 1. Retrosynthetic Analysis of Enigmazole A (1)
Scheme 2. Formation of Oxazol-2-ylzinc Reagent 9 and Negishi
Coupling with Vinyl Iodide 10a
a Reagents and conditions: (a) MnO2, CH2Cl2, rt, 1 h, 82%; (b) (+)-
MIB, Me2Zn, hexanes, 0 °C f rt, overnight, 60%; (c) (i) NaH, THF,
imidazole (cat.), 0 °C f rt, 2 h, then (ii) MeI, 1.5 h, 80%; (d) Zn, LiCl,
THF, rt, 10 min; (e) Pd(PPh3)4, rt, 1 h, 86%.
by transmetalation of 2-lithiooxazole with ZnCl2; however, the
strongly basic conditions required for C2 deprotonation are
mutually exclusive with the preparation of oxazole zincates
bearing reactive substituents such as carboxylic acid esters.13
The 2-aminooxazole carboxylate ester 11 embodies ambident
reactivity that can be revealed in stages: the electrophilicity of
the carboxylate at C4 and latent nucleophilicity at C2 that can
be unmasked through diazonium salt formation, conversion to
the iodide 12, and direct metalation with Zn0 to give the oxazol-
2-yl zincate 9. While the corresponding ethyl 2-bromooxazole-
4-carboxylate has been used in Pd-promoted Stille coupling of
oxazoles,14 our preliminary surveys showed the latter were poor
substrates for Zn insertion. Iodooxazole 12 (Scheme 2), a new
oxazole synthon, was conveniently prepared on a multigram
scale by condensation of urea and ethyl bromopyruvate to
provide 11, followed by diazotization and iodide displacement
(see Supporting Information). Iodide 12 was then smoothly
transformed into the oxazol-2-yl zincate 9 under Knochel
conditions (Zn, LiCl, THF, 10 min).15 Solutions of 9 in THF
were appreciably stable; a stock solution of 9 (0.5 M) stored in
the dark under N2 at 4 °C lost less than 23% of its titer over 1
month.16
Synthetic Plan
Antithetic analysis (Scheme 1) shows major disconnections
at the macrolide ester bond and C12-C13 bond leading to the
“Eastern” fragment 7 that could be united with the remainder
of the molecule by Wittig olefination. The central embedded
pyran ring was envisioned to arise in turn from a diastereose-
lective hetero-Diels-Alder (HDA) cycloaddition between al-
dehyde 5 and diene 6. We were cognizant that the major
challenges would lie in construction of the Eastern fragment
bearing the oxazole. Commonly, methods for construction of
2,4-disubstituted oxazoles are reliant upon de noVo assembly
of the oxazole ring from serine-derived fragments by
cyclodehydration-oxidation.10 We sought to introduce the
oxazole ring of 1 at an early stage by “grafting” of C2 and C4
substituents to a preformed oxazole synthon, represented by
oxazol-2-ylzinc reagent 9, in anticipation of C20-C21 bond
formation through Negishi coupling with 10.11
The use of metalated oxazoles, in particular 2-oxazole
zincates, is underdeveloped in natural product synthesis.12
Simple oxazol-2-ylzinc reagents have been prepared previously
(7) (a) Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Fujita, S.;
Furuya, T. J. Am. Chem. Soc. 1986, 108, 2780–2781. (b) Kato, Y.;
Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Koseki, K. J. Org. Chem.
1988, 53, 3930–3932. (c) Matsunaga, S.; Fujiki, H.; Sakata, D.;
Fusetani, N. Tetrahedron 1991, 47, 2999–3006. (d) Matsunaga, S.;
Fusetani, N. Tetrahedron Lett. 1991, 32, 5605–5606.
Synthesis of the Eastern Hemisphere
Synthesis of the key intermediate 7 began with preparation
of vinyl iodide 10. Oxidation of allylic alcohol 1317 gave the
geometrically unstable aldehyde 14, which was immediately
(8) (a) Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992,
114, 9434–9453. (b) Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda,
T.; Filla, S. A.; Masamune, S. Angew. Chem. 1994, 106, 674–677.
(c) Smith, A. B.; Friestad, G. K.; Duan, J. J.-W.; Barbosa, J.; Hull,
K. G.; Iwashima, M.; Qiu, Y.; Spoors, P. G.; Bertounesque, E.;
Salvatore, B. A. J. Org. Chem. 1998, 63, 7596–7597. (d) Smith, A. B.;
Friestad, G. K.; Barbosa, J.; Bertounesque, E.; Hull, K. G.; Iwashima,
M.; Qiu, Y.; Salvatore, B. A.; Spoors, P. G.; Duan, J. J.-W. J. Am.
Chem. Soc. 1999, 121, 10468–10477. (e) Smith, A. B.; Friestad, G. K.;
Barbosa, J.; Bertounesque, E.; Duan, J. J.-W.; Hull, K. G.; Iwashima,
M.; Qiu, Y.; Spoors, P. G.; Salvatore, B. A. J. Am. Chem. Soc. 1999,
121, 10478–10486.
(12) For examples of metalated oxazoles in natural products synthesis, see:
(a) Mulder, R. J.; Shafer, C. M.; Molinski, T. F. J. Org. Chem. 1999,
64, 4995–4998. (b) Bobeck, D. R.; Warner, D. L.; Vedejs, E. J. Org.
Chem. 2007, 72, 8506–8518. (c) Anderson, B. A.; Becke, L. M.;
Booher, R. N.; Flaugh, M. E.; Harn, N. K.; Kress, T. J.; Varie, D. L.;
Wepsiec, J. P. J. Org. Chem. 1997, 62, 8634–8639.
(13) (a) Crowe, E.; Hossner, F.; Hughes, M. J. Tetrahedron 1995, 51, 8889–
8900. (b) Harn, N. K.; Gramer, C. J.; Anderson, B. A. Tetrahedron
Lett. 1995, 36, 9453–9456. (c) Anderson, B. A.; Harn, N. K. Synthesis
1996, 583–585. (d) Reeder, M. R.; Gleaves, H. E.; Hoover, S. A.;
Imbordino, R. J.; Pangborn, J. J. Org. Process Res. DeV. 2003, 7,
696–699.
(9) Crank, G.; Foulis, M. J. J. Med. Chem. 1971, 14, 1075–1077.
(10) Selected examples of natural product syntheses involving 2,4-
substituted oxazole construction: (a) Wipf, P.; Graham, T. H. J. Am.
Chem. Soc. 2004, 126, 15346–15347. (b) Wipf, P.; Lim, S. J. Am.
Chem. Soc. 1995, 117, 558–559. (c) Bull, J. A.; Balskus, E. P.; Horan,
R. A. J.; Langner, M.; Ley, S. V. Chem.sEur. J. 2007, 13, 5515–
5538. (d) Linder, J.; Moody, C. J. Chem. Commun. 2007, 1508–1509.
(e) Panek, J. S.; Liu, P. J. Am. Chem. Soc. 2000, 122, 11090–11097,
and prior studies. (f) Smith, A. B., III; Minbiole, K. P.; Verhoest,
P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942–10943.
(11) Negishi, E.; Van Horn, D. E.; King, A. O.; Okukado, N. Synthesis
1979, 501–502.
(14) Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4, 2905–2907.
(15) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 6040–6044.
(16) Determined by periodic quenching of aliquots with an excess of I2
solution in THF and back-titration with standard aqueous 0.1 M
Na2S2O3; see Supporting Information.
(17) (a) Duboudin, J. G.; Jousseaume, B.; Bonakdar, A. J. Organomet.
Chem. 1979, 168, 227–232. (b) Wiemer, D. F.; Han, Q. J. Am. Chem.
Soc. 1992, 114, 7692–7697. (c) Larock, R. C.; Doty, M. J.; Han, X.
J. Org. Chem. 1999, 64, 8770–8779.
9
J. AM. CHEM. SOC. VOL. 132, NO. 30, 2010 10287